
NASA-CR-I94758
/- /,tj,. 4.-

c%"T

4q P

FINAL TECHNICAL REPORT

NAG3-1300

Design of a Surface Deformation Measuring Instrument for

the Surface Tension Driven Convection Experiment (STDCE-2)

for:

Alexander D. Pline

NASA Lewis Research Center

21000 Brookpark Road

Cleveland, OH 44135

by:

H. Philip Stahl, Ph.D.

Rose-Hulman Institute of Technology
5500 East Wabash Avenue

Terre Haute, IN 47803

23 December 1993

co
N O"

N t_ tt_

U 0',
0', C
Z _ o



Design of a Surface Deformation Measuring Instrument for
the Surface Tension Driven Convection Experiment (STDCE-2)

OUTLINE

1.0 Introduction

2.0 Objectives

3.0 Accomplishments

4.0 Student Involvement

5.0 Master's Thesis

6.0 Publications

7.0 Presentations

Appendix A: Publication Reprints

Appendix B: Presentation Viewgraphs



Design of a Surface Deformation Measuring Instrument for
the Surface Tension Driven Convection Experiment (STDCE-2)

1.0 Introduction

This Final Technical Report covers the work accomplished (under NAG3-1300) from 1
October 1991 to 1 October 1993. The grant is a direct result of Dr. H. Philip Stahl's
(of Rose-Hulman Institute of Technology) participation in the NASA/ASEE Summer
Faculty Fellowship Program at NASA Lewis Research Center sponsored by Case
Western Reserve University and the Ohio Aerospace Institute.

The Surface Tension Driven Convection Experiment (STDCE) is a fundamental fluid

physics experiment designed to prov!de quantitative data on the thermocapillary flow
of fluid under the influence of an increased localized surface temperature. STDCE
flew on the Space Shuttle Columbia in the First United States Microgravity Laboratory
(USML-1) in June 1992. The second flight of this experiment (STDCE-2) is scheduled
for 1995. The specific science objectives of STDCE-2 are to determine the extent and
nature of thermocpillary flows, the effect of heating mode and level, the effect of the
liquid free-surface shape, and the onset conditions for and nature of oscillatory flows.
In order to satisfy one of these objectives, an instrument for measuring the shape of
an air/oil free-surface must be developed.

2.0 Objectives

The purpose of the first year of this project was to conduct a feasibility study to
develop one or more non-contact (i.e. optical) techniques for measuring the surface
deformation of an air-oil free-surface under the influence of a localized thermal load

(i.e. CO2 laser beam or electric heater) which could be integrated into the anticipated
reflight of the Surface Tension Driven Convection Experiment (STDCE-2). While
initially these measurements were to be performed in a laboratory environment, the
instrument had to be capable of operating in a Space Transport System (STS)
environment for the United States Microgravity Laboratory flights USML-2.

The primary purpose of the second year of this project was to design, build, calibrate,
and fully characterize the instrument(s) prototyped during the first year. A secondary
purpose was to actively participate in the design of an engineering model and flight
system for STDCE-2/USML-2.

Additionally, both years had the goal of developing algorithms and software to
automatically analyze the output data provided by the surface deformation measuring
instrument.



3.0 Accomplishments

A prototype instrument was developed, designed, built, calibrated, and fully
characterized for measuring the surface deformation of an air-oil free-surface under
the influence of a CO2 laser beam. The prototype instrument utilizes a modified two-
channel Ronchi test technique where a collimated beam of light is reflected off of the
oil free-surface and passed through a sinusoidal amplitude grating. The transmitted
irradiance pattern provides quantifyable data about the surface's slope as a function of
position. These results are described in great detail in the following publications:

Meyers, William S., Desi.qn and (_alibration of a Two Channel Ronchi System to
Contour a Dynamic Fluid Surface, Master's Thesis, Rose-Hulman Institute of
Technology, 1993.

Meyers, William S., and H. Philip Stahl, "Sensitivity of Two-Channel Ronchi
Test to Grating Misalignment," SPIE Vol. 1994, 1993.

Meyers, William S., and H. Philip Stahl, "Contouring of a Free Oil Surface,"
SPIE Vol. 1755, 1992.

Meyers, William S., Brent C. Bergner, Ronald D. White, David J. Huff, and H.
Philip Stahl, "Contouring of a Free Oil Surface," SPIE Vol. 1779, 1992.

Algorithms to analyze the output slope data provided by the surface deformation
measuring instrument were developed and reported in:

Fischer, David J., John T. O'Bryan, Robert Lopes, and H. Philip Stahl, "A
Vector Formulation for Interferogram Surface Fitting," Applied Optics, Vol.32,
No.25, pp.4738, 1 September 1993

Fischer, David J., and H. Philip Stahl, "Mechanism for Surface Fitting of
Interferometric Slope Data," SPIE., Vol. 2003, 1993.

Fischer, David J., and H. Philip Stahl, "A Vector Formulation for Ronchi Shear
Surface Fitting," SPIE Vol. 1755, 1992.

Fischer, David J., John T. O'Bryan, and H. Philip Stahl, "A Vector Formulation
for Interferogram Surface Fitting," SPIE Vol. 1779, 1992.

The developed algorithms were implemented in a software program called THIN which
has been delivered to NASA Lewis Research Center (LeRC). This program is being
extended by NASA LeRC to automatically analyze Ronchi patterns using image
processing techniques.



A modular flight system was designed for the anticipated reflight of the Surface
Tension Driven Convection Experiment (STDCE-2) on the United States Microgravity
Laboratory (USML-2). It was designed to satisfy the following science requirements:

• observe the entire surface for three different sized chambers

(12 mm, 20 mm, and 30 mm).

• measure slopes as small as 5 IJm/mm.

• measure slopes as great as 30 pm/mm without vignetting.

• spatially sample the surface at least 10 times per diameter.

• reconstruct the surface shape along a given diameter.

• and, indicate when the oil is filled to its flat surface position.

The design of this instrument is published in:

Stahl, H. Philip, "Conceptual Design of a Surface Deformation Measuring
Instrument for the Surface Tension Driven Convection Experiment (STDCE-2),"
SPIE Vol. 2005, 1993.



4.0 Student Involvement

Aside from the technical objectives, a major goal of this project was to provide a
number of students with their first exposure to a 'real-world' research project. This
was accomplished and the Principle Investigator is exceedingly proud of each
student's achievements.

William S. Meyers developed and calibrated the prototype instrument for his Master's
of Science in Applied Optics with assistance from Brent Bergner, Leif Sorensen, Ron
White, and Dave Huff. Bill is now pursuing a Ph.D. in Bio-Physics at the University of
Indiana/Purdue University in Indianapolis. He is performing research on optical
tomographic imaging of the human body.

David J. Fischer developed and encoded the Ronchi pattern slope analysis algorithms
with assistance from John O'Bryan and Dr. Robert Lopez of the Mathematics
Department. Dave was the recipient of a full fellowship and is pursuing a Ph.D. in
Optics at the University of Rochester

The software package THIN was developed through the efforts of: Kent Flint, Brad
Freriks, Kurt Louis, Tony McAllister, Steven Reid, Brad Rodeffer, John Snider, Jason
Snyder, Kevin Stultz, and Dr. Dale Oexmann of the Computer Science Department.

Kevin Stultz is pursuing an M.S. in Computer Science at the University of Alabama in
Huntsville. He is performing research on image processing methods to analyze

Ronchi patterns. His research is a direct extension of the work begun under this
grant.

The participation of each student is summarized in the attached table.

Finally, two students participated in the NASA/ASEE Summer Internship Program at
NASA LeRC sponsored by OAI and CWRU - Bill Meyers (Summer 92 and 93) and
Kevin Stultz (Summer 93). And, Dave Fischer participated in the NASA/ASEE
Summer Internship Program at NASA Langley in the Summer of 1992.





5.0 Master's Thesis

Meyers, William S., Desi.qn and Calibration of a Two Channel Ronchi
System to Contour a Dynamic Fluid Surface, Master's Thesis, Rose-
Hulman Institute of Technology, 1993.

6.0 Publications

Fischer, David J., John T. O'Bryan, Robert Lopes, and H. Philip Stahl, "A
Vector Formulation for Interferogram Surface Fitting," Applied Optics,
Vol.32, No.25, pp.4738, 1 September 1993

Fischer, David J., and H. Philip Stahl, "Mechanism for Surface Fitting of
Interferometric Slope Data," SPIE Vol. 2003, 1993.

Fischer, David J., and H. Philip Stahl, "A Vector Formulation for Ronchi
Shear Surface Fitting," SPIE Vo!. 1755, 1992.

Fischer, David J., John T. O'Bryan, and H. Philip Stahl, "A Vector
Formulation for Interferogram Surface Fitting," SPIE Vol. 1779, 1992.

Meyers, William S., and H. Philip Stahl, "Sensitivity of Two-Channel
Ronchi Test to Grating Misalignment," SPIE Vol. 1994, 1993.

Meyers, William S., and H. Philip Stahl, "Contouring of a Free Oil
Surface," S.PIE V01. 1755, 1992.

Meyers, William S., Brent C. Bergner, Ronald D. White, David J. Huff,
and H. Philip Stahl, "Contouring of a Free Oil Surface," SPIE Vol. 1779,
1992.

Stahl, H. Philip, "Conceptual Design of a Surface Deformation Measuring
Instrument for the Surface Tension Driven Convection Experiment
(STDCE-2)," SPIE Vol. 2005, 1993.

7.0 Presentations

Stahl, H. Philip, "Measuring Deformations in Space," University of
Arizona Optical Sciences Center Colloquium, Tucson, AX 1993.
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Conceptual Design of a
Surface Deformation Measuring Instrument for the

Surface Tension Driven Convection Experiment (STDCE-2)

H. Philip Staid
Staid Optical Systems

$ Hyvue Dr.
Newtown, CT 06470

ABSTRACT

The planned Space Shuttle Experiment STDCE-2 (Surface Tension Driven Convection Experiment) requires a
non-contact Surface Deformation measuring instrument to monitor the shape of • dynamic fluid surface. This
paper presents • conceptual design for this instrument which best satisfies the various science, engineering, and
managerial constraints.

1.0 INTRODUCTION

The ability to grow semi-conductor crystals, biological crystals, or to solidify metal alloys (on earth or in space)
is limited by convective fluid flow which introduces imperfections into the lattice structure. Convection arises
from two sources: gravity and surface tension. Gravity driven convection (natural convection or buoyancy)
occurs when there is • temperature difference within a fluid volume. Colder, heavier fluid is pulled down
causing warmer, lighter fluid to rise. Surface-tension driven convection (thermocapiUary flow) occurs when
there is • temperature difference across the surface of • fluid. Because a warmer fluid has a lower surface
tension, it is pulled towards the colder sin-face liquid (which has a higher surface tension). As the warmer fluid
moves across the surface, it draws liquid up to the surface, producing a flow.

On Earth, buoyancy driven convection dominates crystal growth and alloy solidification. Also, gravity causes
lattice structures to 'sag' and limits the size of crystals which can form in suspension. But in microgravity,
buoyancy flow is reduced to 104sand crystals of any size remain in suspension. Thus, material processing in
space offers great promise. However, thermoeapillary flow still exists and must be understood.

2.0 SURFACE TENSION DRIVEN CONVECTION EXPERIMENT

The Surface Tension Driven Convection Experiment (STDCE) is • fundamental fluid physics experiment
designed to provide qmmtitative data on the thermocapillary flowof fluid under the influence of an increased
localized surface temperature '. STDCE flew on the Space Shuttle Columbia in the First United States
Microgravity Laboratory (USML-1) in June 1992, The second flight of this experiment (STDCE-2) is
scheduled for the Fall of 1995.

The objective of STDCE was to determine the extent and nature of steady-state thermocapillary flow as a
function of heating mode and level, and liquid free-surface shape. It demonstrated the existence of microgravity
steady-state the_illary flow in • 10 cm diameter chamber for both flat and curved surface shapes when
heated by either an electric heater or • CO2 laser beam (Figure 1).

The objective of STDCE-2 is to determine the onset conditions for and nature of oscillatory thermocapillary
flow as • function of heating mode and level, liquid free-surface shape, and container size. For STDCE-2 the
10 cm chamber is replaced by three chambers of 3.0, 2.0, and 1.2 em in diameter.

To fully accomplish the science objectives, three parameters must be monitored: surface temperature distribu-
tion, bulk fluid flow, and surface deformation. Both STDCE and STDCE-2 monitor the surface temperature

distribution with • HgCdTe thermal imager. And, bulk fluid flow is monitored by observing the motion of
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tracer particles (which have been uniformly mixed into the fluid) as they move through • _eet or beam of light.

But, while STDCE had no means for measuring surface deformation, STDCE-2 will (Figure 2).

A deformation measuring capability has been added to STDCE-2 because current research indicates that both

steady-gate and oscillatory flow states produce deformations of the air/oil free surface. Additionally, it is

hypothesized that there is • coupling between oscillatory flow type and deformation shape, velocity flow, and
I_rface temper•tree field. Depending upon the experimental conditions, steady state flow produces two

characteristic geady state surface deforn_ions: • 'Phnple' (bump), and • 'D_Je' (bole). Oscillatory flow

occurs with either pin]pies or dimples and produces both standing wave and rotary surface deformations.

3.0 EVALUATION OF ALTERNATIVES

The purpose of this project is to design, build, calibrate, and fully characterize one or more non-cofitact (i.e.

optical) prototype instruments for measuring the surface deformation of an air-oil free-surface under the

influence of • localized thermal load (i.e. CO2 laser beam or electric heater) which can be integrated into the

anticipated re-flight of the Surface Tension Driven Convection Experiment (STDCE-2). While initially these

measurements will be performed in • laboratory environment, the instrument must be capable of operating in a

Space Transport System (STS) ezlvironment for the United States Microgravity Laboratory flights USML-2.

Because the surface is • fluid, it cannot be contoured mechanically. It must be contoured optically. There are

two ways to nzasure • two-dimensional reflective surface: intefferometrically or geometrically. For most

optic_ applications, interferometers are generally preferred to geometrical tests. They are more accurate and
sensitive. And, because they measure • surface's shape while most geometrical tests measure • surface's slope,

they ate easier to interpret. Unforttmately, because the anticipated surface deformations are on the order of 100

/zm, conventional visible intefferometry is not practical. The fringes density will be too great for the camera to

resolve. One solution to this problem is to use an infrared interferometer, but such • technique might interfere

with the localized heating process. Therefore, a geometrical technique is required.

Because geometrical techniques measure the surface's slope instead of its height, they have specific advantages

and disadvantages. They are insensitive to tilting of the free-surface cause by G-Jitter. But, they require two

orthogonal data sets in order to reconstruct its shape. These two data sets can be either x-slope and y-slope or

r-slope and 0-slope. Whether two data sets are truly required depends upon whether the surface is rotationally

symmetric. If the surface is rotationally symmetric, then it may be possible to satisfy the mission's science re-

quirements with just x-slope or r.-slope. But, if the surface is non-rotationally symmetric, then it is necessary to

acquire two orthogonal data sets. Unfortunately, the surface deformations observed in the laboratory are not
rotationally symmetric. But, • unique feature of these deformations which may eventually lead to a simple

solution is that their outer edge is at a constant height.

Many classical gecnnetric test techniques (Fveeault kmfe-edge test, wire test, Hartmann screen test, Ronch] test,

etc.) were considered. Of these, three which provide data over the entire aperture were selected for further

evaluation: Ronchi grating, Hartmann test, and Projected grid.

In the projected grid approach, • linear or crossed grid pattern is placed directly in front of an extended light
source (illuminated diffuser screen). This pattern is then imaged onto the reflective sample surface. The

reflected wavefront is re-imaged by another optical system onto the video camera. The projected grid approach

was eliminated because it lacked sensitivity, dynamic range, and flexible spatial sampling.

In the single-clumael Ronchi grating test, • collimated beam of light is reflected off of the sample surface

(Figure 3). The reflected wavefront is focused through • grating to form • Ronchigram which is imaged onto a

video camera. The Ronchi approach has many advantages. By selection of the grating spatial frequency, it has
variable sensitivity and dynamic range. By selection of the grating location, it has adjustable spatial sampling.

Unfortunately it does not provide simultaneous orthogonal slope data sets.



TheHartmannicreen test can provide both x- and y-•lope information simultaneously. But, it has limited

spatial resolution. And, for this application, it is not practical because the screen would obscure the upper

surface flow visualization function. An alternative is to use crossed gratings in a Ronchi test. However, the
complex patterns produced are difficult to analyze.

Another way to obtain sixmdtmeous x- and y-•lope data is with • two channel Ronchi approach (Figure 4).
With the two-channel Ronchi approach, • collimated beam of light 0aser or white) is projected onto the

reflective sample mu'face. The reflected beam is collected, split into r,eparate x- and y-slope measurement
chaanels, passed through verticad and horizontal gratings, and projected onto an observation screen for viewing

by • video camera. A two channel Ronchi instrument was demonstrated which simultaneously acquires x- and

y-slope data for an input wavefront 2. Unfortunately, because of packaging, cost, and schedule issues, • two
channel system could not be implemented.

Based upon mm_gerial _ (packaging, cost, and schedule) and gcimce issues (_mitivity, dynamic range,

and spatial sampling) • _ngle channel Ronchi system was selected. The managerial constraints and science

requirements were then iterated, resulting in Table 1.

4.0 THE RONCHI TEST

The Ronchi test is performed by observing the shadow pattern produced when • focused beam of light is passed

through • periodic structure, such as • line grating, which is located either at focus or •way from focus a

distance z (Figure 5). If the beam is ideal, the shadow pattern looks like the grating. But, if the beam is

deformed, then the pattern is deformed. A Ronchigrtm is obtained when the shadow pattern is recorded at an
image of the surface under test, such that it is superimposed ('painted') upon the image. Information about the

surface is obtained by correlating shadow lines with physical locations on the surface. The distance between

adjacent shadows indicates how much the surface slope changes between those two locations. The mount of

slope required to go from oze shadow to its neighbor is called the equivalent wavelength. Alternatively, the

Ronchi test can be though of as • sheared intefferogram produced by overlapping diffraction orders.



1"heperfonmmc_ of the Ronchi system with an tmplitude sine t'n_g is _mpletely specified by its equivalent
wavelength:

d

kq = 2(F/#)

Since the F/# of the measurem_t beam is fixed by the optical system, everything depends upon grating spacing,
d. This dependance is exlaemely important. It allows for the measurement sensitivity to be varied on orbit by
inserting into the beam gratings with different spatial frequencies (Figure 6). If the surface deformation is
larBe,inserlacoanegrating.Ifitissm_dl,me a finegra6ng.

Accuntey defiues the uncertainty ofa givm measurement. For the ca'rent sampling system, the measurement

w.curacy is approximately )_,_/8. A measurement system can _>ort numbers to an arbitrary precision, but they
may not be accurate or repeatable. The minimum measurable value of a give_ _stem is defined to be twice its
messuremmt accuracy. For the current rumpling system the minimum nzasurable slope is approximately

_/4. The maximum amount of full chamber slope which the system can measure is determined by how many
shadow lines (fringes) the video can_ra can clearly resolve in the Ronchigram. For the current sampling

system, the Ronchigntm will be limited to approximately 16 lines pairs for a maximum slope of 16 _.

Table 2. Performance Summary foi F/2.25 System

Grating
Frequency

[3p/nan]

Grating
Line Space

[mm_p]

0.5

1.0

2.0

2.5

5.0

I0.0

[_m/mm]

Minimum

Slope

2.0 444.44 55.56 III.I1

1.0 222.22 27.78 55.56

0.5 III.II 13.89 27.78

0.4 88.89 11.11 22.22

0.2 44.44 5.56 11.11

0.1 2.7822.22 5.56

Maximum

Slope
[um/mm]

7111

3556

1778

1422

711

356

5.0 FLIGHT SYSTEM CONCEPTUAL DESIGN

The flight free-surface deformation measuring instrument was designed in six modules (Figure 7): light source,
projection�imaging, polarization, pupil relay, measurement, and camera. Each module overcomes various
mgineering and/or packaging challenges while allowing the total system to meet the science requirements. Each
module is designed to be independently assembled and bench aligned before integration into the final system.
And, each module is designed to prevent unnecessary exposure of the crew to light radiation.

5.1 The Off Surface

The object under test is a free surface of 2 c.St silicon oil. It has a refractive index of 1.39. And, an irradiance
reflection coeffieimt of 2.7%. Because of this low reflection coefficient, the source must have at least 10 mW

of power for the video camera to observe the Ronchi pattern. Also, ghost reflections from the optical compo-
nents can obscurethe oil surface reflection.



Becamethefree-oilsurfaceisaspecularreflector,it canbetreatedas• planemirror. Toimplementthe
Rouchi lest, • collimated illumination beam is required. Two illumination geometries were considered: Off-
axis, and on-axis. The on-axis geometry was selected for several reasons. First, it gets the leas closer to the
fluid surface, thus it can accept higher slope errors. Second, it has no off-axis projection distortion or cosine
I_ling. And third, it is easy to package. The on-axis geometry requkes the beam to travel in two directions
through the projeoti(m/imaging module. This can cause ghost reflection problems.

$.2 Lisht Sor_e Module

The wurce module provides • collimated beam of light which uniformly illuminates the object under test. This
is accompfished with a laser diode and • Cndilean beam expanding telescope (Figure 8). A laser diode was
selected because it is • very-bright source capable of surviving the launch. (White-llght and LED sources were
also considered.) Cohetmce is not • factor in selecting • light source. A Galilean beam expander was selected
because it is comimcJ and does not have • spatial filter which could become misaligned during launch. The
beam diameter is defined by the projection/imaging module's entrance pupil to be 22 mm in diameter. The
beam is magnified (30X) end truncated to balance uniformity and power.

$.3 Projection/Imaging Module

The projection/imaging module has two functions: illumination and imaging. Its illumination function
magnifies or de-nutguifies the light beam to illuminate the oil surface for each of the three chamber sizes (12
ram, 20 ram, 30 ram). Its imaging function has two requirements: to form an image of the different sized
surfaces under test at a fixed sized pupil location, and to pass • reflected wgvefront with at least 30 _m/mm of
slope without vignetting. The illumination and imaging functions determine the magnification properties of this
module. The vignetting requirement determines its F/#. Packaging issues determines its clear aperture.

The illiuninafion fimction is accomplished with two AFOCAL le_s pairs (Figure 9), an outer pair and an inner
pair. The outer pair forms • Keplerian telescope with unit magnification. The inner pair forms a Galilean
telescope which is positioned about the outer pair's internal focus and functions as a pseudo field lens. Tl_s
lens provides mag_ificatiotffde-magnification when it is flipped. To illuminate the 20 mm chamber, remove the
flip leas such that the 22 mm source beam is relayed unchanged. To illuminate the larger or smaller chambers,
insert the flip Ires either forward or backward to magnify or de-magnify the beam (Table 3). The final
illumination beam size depends upon the flip lens magnification factor. The flip lens is not symmetric about the
focal point and does not rotate about the focal point.

Imaging of the different sized _bers into • fixed _ pupil is accomplished by running the beam backwards
through the sygem. The Keplerian telew.o_, without the flip lens, relays an image of the surface in the middle
_zed chamber. Inserting the flip lens, the system relays images of the larger or smaller sized chambers. For
proper imaging the surface must be in the front focal plane of the lens closest to the oil. The resultant image
will be in the back focal plane of the last lens of the projection/imaging module. This image is transferred to
the camera module by the pupil relay and measurement modules - forming • Ronchigram.



Theprojectionfimaging module (as well as the pupil relay and measurenmat modules) must pass • maximum
slope of 30 pro/ram without vignetting. This places an F/# requirement on these components. The faster their
F/# the more slope they can pass. Initially, the optical system was designed to fully collect • wavefront
reflected from a 250 pm high, 10 mm diameter spherical deformation. However, this was relaxed because of
packaging and w.,hedule _ Packaging factors limit the lens's maximum diameter and minimum focal
Imgth. Schedule require them to be commercially available.

"/'heselec/ed ¢ompoamts are F/2.25 (90 mm focal length, 40 mm diameter) achromatic doublets with approxi-
mately 2 waves of spherical aben'afion at 633 am. This amount of aberration is acceptable given the magnitude
of the anticipated oil aarfac.e deformations. With proper calibration, this error can be removed from the
mmsuremmt. Table 4 gives the maximum mu'face feature and slope which can be image with the current
system. Please note that the 30 ;ml/mm specification is not satisfied for the 30 mm diameter chamber.

5.4 Pohu'ization Module

The polarization module eliminates ghost reflections and efficiently uses the source's available optical power.
Since the projection/imaging module is used in both directions and because the oil's reflection coefficient is
small, ghost reflections from the illuminated optical surfaces can seriously obscure the oil reflection. To
eliminate this problem, the polarization of the beam is manipulated such that the ghost reflections are vertically
polarized and the oil reflection is horizontally polarized. Tiffs is accomplished with two polarizers and • quarter
wave plate (Figure 10). The first polarizer defines the polarization of the ghost reflections. The quarter wave
plate rotat_ the oil reflection polarization by 90 degrees. And, the _econd polarizer blocks all of the ghost
reflectiom and passes the oil reflection. To maximize the •va.ilable power, • polarization beam splitter is used.
All of the source's vertical light is transmitted into the projection module. And, all of the re.turning horizontal

light is reflected ;nto the relay module. A conventional 50/50 beam splitter could be used, but it would throw
•way 75 _ of the available light.



5.5 I_pU I_.._yModule

The pupil relay module is a uait magnification AFOCAL system. Its primary function is to extend the beam
path such tim the measurement module is at a location where the mission specialist caa insert the gratings.
Additionally, it Jerves as an alternative measurement module allowing for gratings to be inserted into parts of
the beam not accessible with the measurement module. This is required to properly measure hole deformations.

5.6 Mmmuemmt Module

The measurem_t module allows gratings of different line spacings to be humted into different locations of the
focused oil reflection forming a RoncJaigntm. Since the leas F/#'s are known, changing the grating line sp_ing
changes the equivalent wavelength. The equivalent wavelength depends only upon the grating line spacing and
is independent of where the grating is placed in the beam. Grating placement in the beam determines the
number of spatial sample points across the beam. To insure at least 10 sample points per diameter, a coarse
grating must be placed at a greater distance from the measurement module focus thaa a fine grating. The
distance from focus for a givea grating depends entirely upon its line spacing:

z = 10d(F/#) ,, 22.5d

Table 5 summarizes the distances needed foreach grating to produce10 lines.

Table 5. Distance from Focus for Spatial Sample Points

Grating
Frequency
rip/ram]

Grating
Line Space

Z for 10 Samples
per Diameter

Z for 15 Samples
per Diameter

[mm/Ip}
,=

0.5 2.0 45.0 nun 67.5 mm 90.0 mm
,,m

1.0 1.0 22.5 mm 33.75 mm 45.0 mm
i

2.0 0.5 11.25 mm 16.88 mm 22.5 mm

0.4

0.2

O.l

9.0 mm

4.Smm

2.25 mm

13.5 mm
m

X for 20 Samples
per Diameter

18.0 mm2.5

5.0

10.0

6.75 nun 9.0 nun

3.375 tam 2.5 mm

To reconstruct a two-dimensiomd a-arface contour,separatehorizontal and vertical gratings, or crossed gratings
can be inserted into the beam. Radial or circular zone gratings may be tried.

5.6.1 Fill Level Indication

Silicon oil lurea very low mrface tension and spreads easily on any •urface. To prevent it from flowing out of
the container, the rim of the chamber has a dmtrp edge that 'pins' the oil ia place and is 'barrier' coated. As
the container is filled in low gravity, the liquid will form • deep spherical curvature. When completely filled,
the mzrfacewill be fiat. If over-filled, the surface will form • spherical dome. By placing • grating at the focal
point of the tmasuretmmt module, direct visual evidence of the oil's surface state is provided to the Mission
Specialist. When the oil surface is not fiat, there is a line pattern. As the oil approaches a flat surface, the

pattern spreads out (has fewer lines) until all the lines disappear when the surface is fiat. If the container is
under or overfiHed, the lines will reappear and increase in number.



5.7 CameraModule

TheRonchigramproducedbythemeasurementmoduleis imagedontoadiffuser plate where • real image is
formed. This image is viewed by • video camera and recorded on video tape for subsequent (post-flight) data
analysis 3. The physical distance from the diffuser screen to the camera is determined by the focal length of the
eamera Ires, the eanm', _ar, or format, and the _ of the image on the diffuser _a'een:

h
]d - I * "*_' fu,,,s,,-

raw, J

For the flight •3,stem, the difftmvr image radius is 10 ram, the _nsor radius is 2.2 ram, and the camera lens
focal length is 28 ram. Thus, the stand-off dig•nee is 155 nun. The camera is a 1/2 inch format R$-170 video

In addition to being able to spatially resolve the •re'face feature without vignetting, the system is required to
temporally resolve the oscillation. It is assumed that the period of this oscillation is on the order of 2 to 5
seconds. Tam, • standard video camera with • 60 Hz field rate is adequate. Finally, it is assumed that there
may be high-speed temporal titter in addition to the lower-speed temporal oscillation. This giver could reduce
the conmun of the pattern. To ellmi_te titter the caner• will aeed • high speed shutter and the source will
need sufficimt output power to expose the camera.

6.0 CALIBRATION

If the optical system were aberration free, the Ronchigram of an ideal flat mirror would be • series of perfect
straight lines. However, given the total number of positive optical components in the optical system, such •
pattern is impossible. By meamu_g the beam reflected from • 'perfect' reference-flat insert, after assembly,
these errors can be characterized and removed from a]l measured data. Additionally, the system can be
calibrated by testing • series of known diamond-turned test plate samples.

Calibration of the prototype hum-ument was accomplished by measuring • known amount of defocus aberration
introduced by translating the collimating leas:

W02o = - . E_z
S (F/_ 2

where:, cz " l.o_Zberration

The result of this calibration gives • measurement accuracy of approximately ± 10%. Measurements made on
the known test Immples corL_'m this result.

The system is designed for the insertion of interchangeable gratings at various locations in the beam. Thus,
grating alignment errors can be • problem. To a_ess this, the data analysis process has been evaluated for its
sensitivity to errors in the position of one grating relative to its orthogonal par_er. In general, the Ronch/test
is relatively insmsifive to mall grating placement errors (except for translation along the surface normal') for
grating frequencies less thin 3 to 5 lp/mm.

7.0 CONCLUSIONS

A prototype Ronchi instrument to monitor •1early-state and oscillatory deformations, and fluid fill level of a free-
mu-faceof oil has been developed, demonstrated, and characterized for STDCE-2. A single-channel Ronchi
configuration has been selected as the flight instrument. The flight instrument is currently being designed.



The Ronch/test is a shearing interferometer. The number of sheared wavefronts and the magnitude of the shear

is dependant upon the characteristics of the grating. The fringe spacing (equivalent wavelength) in a

Ronchigram is proportional to the spacing of the grating and the F/# of the test beam. The dynamic nmge and
K_sifivity of the l_nchi test can be changed by simply changing the grating spacing. The prototype two

channel Ronchi system has an accuracy of ± $_. For • shearing system, the maximum measurable error is

determined by the mr'face curvature.
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Fig, ure 5. The Ronchi Test.
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Figure 7. Schematic Diagram of the Flight System
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Contouringofa freeoilsurface

William S. Meyers and H. Philip Stahl

Rose-Hulman I_timte of Technology, Department of Physics and Applied Optics
5500 Wabash Avenue, Terre Haute, Indiana 47803

ABSTRACT

A non-contact C e.. optical) technique is required to measure the defmnation of a fn_c oil surface
under the influence of a localized hhermal load. This deformation is caused by surface tension driven thermal
convective flow inside the fluid, and can be as large as 250 mi_eters. Therefore, conventional intafenane_
is not lxr,sible. Instead, a Ronchi technique is _ for contour mapping the oil surface. This paper Wesents
a two channel Ronchi instrument, and some preliminary results fxom the analysis of two aspheric surfaces, • diamond
machined metal surface and the free oil surface.

L INTRODUCTION

Scientists at Case Western Reserve University and NASA Lewis Research Center are conducting research
on • variety of fundamental phenomena inherent in low gravity processes. One phenomenon being studied is
thermocapillary flow, or fluid flow driven by surface tension. 'I'nermocapillary flows result when temperatm_
differences arise across a liquid/gas interface. _ d/fferences cause a change in the surface tension along the
interface, which results in thermocapillary flow. Improvements in the understanding of thermocapillm3, flow may
lead to technologica/breaklhroeghs in the space_ng of semiconductorcrystals. These experimentswere a
part of the 13-day Microgravity Laboratory(USML-1) shuttle mission in the summerof 1992. The experiment
describedin this paperwas not on that mission, but may be includedon futureshuttlemissions.

One of the parameters of thc_mocapiliary flow to be studied is the ability of the flee surfacetodeform

during flow. The development and implementation of a non-contact (ie. optical) method to monitor these surface
deformationsas• functionofexperimentalparameterssuchas fluidproperties,heating modes,iscxucialtothe

understandingofthephysicsofthermocapillaryflow.

The experimental surface is • three centimeter diameter pool of silicon oil. Deformations as large as 250
micrometers are produced on the surface of the oil by thermocapillary flow. An optical technique instead of a
mechanical technique was chosen to contour the free surface because touching the sur"_,cewhh • mechanica/probe
would deform the surface even more. There are two basic categories of optical techniques: geometric and
interferometric. A geometric method measures surface slope, while an interfemmetrlc method measures surface
heighL The geometric approach was chosen over the interferometric technique for two reasons. First, conventional
visible wavelengthinterfexometrywould producea fringepattern too densetoanalyzebecauseoftheanticipaled
deformationrangeof up to250 micrometers.And, whileinfraredinterferometrictechniquescouldproduce•

resolvablehingepattern,theinfraredbeam mightaffectthesystem'sthermalloading.Second,geometrictechniques

are dependant on the slope of the surface and are therefore insensitive to any jitter or fllt experienced by _ oil
gurface while in space. One disadvantage of using geometric techniques is that two orthogonal data se_, either x-
slope and y-siope or r-slope and O-slope are needed to completely reconsfruct the surface shape.

Five classical geometric techniques were considered: Foucault knife-edge leg, Hartmann screen test, wire
tests, grating interferometry, and Ronchi test. The knife-edge and wire tests were not chosen because they provide
data for only • single zone or diameter, not for the entire aperture. The I-lartmann_reencanprovidetwo orth_onni
data sets at one time, but it has a limited spatial resolutionwhen compared with the Ronchi test. The Roncki test
was chosenasthe techniqueto use for three reasons: the smalldimensions of the experimental pool are tailoredto
theRonchirequirementofacollimatedbeam,theRdnchidataislesscomplicatedtoanalyze,anditcanbeintegrated

withphase-measuringtechniques.

/ "7..%5 /



2. BACKGROUND

2.1 Relevant work

The Ronchi test was discovered by _ physict
Va._.o Ronchi in 1921. Ronchi was allempCingto measure
the radius of curvature of a concave _ mirror. Upon
looking throughthe gratingat the mirre¢,theaerate defec_
of the mirror becameapparem,l_e mirrormrface appeared

measurement of the aberrations or defec_ in many different
applications and using many ¢Y_Ierenttest setups.

A single channel Ronchi tesx is i_own in Rg. l.
A collimated wave.hunt is incide_ upon i test surface. The
reflected waveh-ont contains information about the surface
contour. The c_Uecting lens focuses the waveh-mt onto a
Ronchi grating. The in-adinnce _ produced on the
observation _ is a _ea_-ed inted'emgramcalled a
Ronchigram, where the irradiance across the pattern is
proportional to the slopeof the test surfw.e in the direction
pezpeadicular to the gradngstruclu_.

Figure 1 Single channel Ronchi u_t

3. RONCHI THEORY

3.1 Linear system theory

The Ronchi test can be _eor_ca.Uy explained as either a geometric my or an intefferometric test. From
a geometric ray point of view, the hinges in a Roncldgram are the result of the deviation of a ray f_om its ideal path
because of slope ezxors. In an interferometric test the hinges in the Ronchigram are produced fr_ the interference
betweenoverlappingdiffractionoeders.The overlappingwavefrontsareproducedby a shearingof theoriginal
wavefronLThereforetheRonchi test can be approachedasa shearedwavefront interferome..ter.

]ncldenl
Wavefroni'

Collectlng -. u(x2,g2) u(x3_3)
Lens

Gratlng Ol_seCV-d_ion
Roochilinear systean theory Sc_oen

u(xl,yl)

Figure2

The basic function of the Ronchi test can be explained from a linear system theory poim of view using the
geometry shown in Fig. 2. The wavefront tdlected off of the tes_surface, u(xt,y_), ountains information about the
surface contour. The wavefront observed at the focus of the lens. directly before the grating, is the Fourier transform
of the input wavefronL

U({:,n:) = -_iu(x=,Yl)} (1)



Ahcrtl_ grating, thc wavcrronlis modulatedby the gradng u-dnsmissionfunction, t(x2,y2).

v_,_'2) - u((z.,:,) _2,.¢:)

At the observat_ scre_ the wa_t amplitude is the Fouri_ tnmsform of the _tat the focal
plane of the Ions.

,,c_o,,)- - ,-,_

The wavefi'ontattheobservationsctee-nisa scaledverskmoftheincidentwavefront,ul,convolvedwith

theFouriertransformofthegratingtransmissionfunction.

f _ f Y3 (3)_x3 ;Y3_
._:. < , ) • -,_._,

When thedistancez(distancefromthegratingtotheobservationsczten)isequaltothefocallengthof

thecollectionlens,thewavefrontscalefactordisappearsand equation3 istheoriginalwavefa'ontconvolvedwith

theFouriertransformof thegratingtransmissionfunction.The gratingtransmissionfunctionistheimportant

mechanismintheRonchiteat.

The inadianceattheobservationscreenisgivenby:.

(4)

3.2 Square wave grating

The typeofgratingusedintheRonchitestdeterminestheinterpretationofthefringesintheRonchigram.

A squarewave gratingwas usedinthisexpedmenL A squarewavegratingisaseriesof transparentand opaque

straightlinebands.The _ transformofa squarewave gratingisa sincfunctionconvolvedwitha comb

function.The squarewave functionand itsFouriertransformareshown inFig.3.

When thewidthof thebandsinthesquare

wave gratingisequaltoo0ehalfofthegratingperiod,
theevenordersofthesincfunctionaremissing.Ifthe

contributionsofthehigherodd orders(3,5,7._)m¢

R V!.
I,-----°--_

_-.,t :3 } I e I a' )

Figure3 50/50Dutycyclesquarewave grating



assumedto be negligible, the Fourier Uansform o£ a square wave grating can be approximatedas three delta
functions. Plugging this result into equation 3 gives the wavefront at the observalkm screen for a gquare wave
grating with a 50/50 duty cycle.

u%,y,)-u.÷u,÷u.-u( )'-u( [_-_÷u(_[_*_ (s)

Equation5 isofthesame formasthegeneralequationfora lateralshearinginterfemmetezJ

wr_ --A y)- wr.=. A y).=tx
2' _'

(6)

TheA in equation 6, rdened to as the shear dimnce, is the distance betwem the omtm of the waveftonts.
Figure 4 shows a schematic of the shearing effec_ of the square wave grating.

y3

_ Ror_l'd_r'em

Ub Ua U c
Figure 4 Shearedwavefronts

The irradiance at the oteervation screen is given in equation 7. Just as in a shearing interferometer, the
interference fringes in the Ronchigram are produced in the overlap region of the laterally rd_zred wavefronts. These
overlapping regions are expressed in the irradiance equation as the cross lenns in parenthesis.

f7)

Thee are three fringe patterns produced in the Ronchigram, the intederence between wavefzonts (a,b), (a,c), and
(b,c). Given our setups coarse gratings (50 lp/'m), the actual shear distance is very s_dL The observed irradiance
(Ronchigram) is produced from the overlap region of all three wavehonts.

3.3 Equivalent wavelength

In interferometry, the fringe spacing in an inted_ is Wop(_onal to the wavelength of light used in
the interfemrneter. The irradiance at any point in an interferogram, E(x,y), can be expressed as a function of

measurement wavelength and optical path diffeence (OPD) between the two intedering wavehonts.

.2xOPD..

where _.= m_wurement wavelength

(8)



The OPD in a shearing interferometer is given by Ihe difference between the wavefront and the sheared wavefn_t.

OPD = Wry) - WCZ, 6z, y) = AW_) (9)

The relationship between the differential wavefronl and the tlope of the wavefront is shown in equation I0.

8x
(10)

Inse_g equation 10 imo equation 8 gives the kradiance equation for a shear interfemmeter. This is also
the kradiance equation of a Ronchi test, since the Ronchi test is similar to a shearing interfe_eter.

Z_z,y) = B.(I ÷ ecs(,_--_--))
(II)

equivalent wavelength, 7_, of
divided by the shear distance.

a shearinginterf_ isdefinedas themeasurement wavelength

;t (12)
J.,¢= "_

Insertingtheequivalentwave.lengthdefinitionintoequationII,theirradianceequationcanbe rewrittenasequation
13.

_x_y) = Eo(Z * ccs(2za))
(13)

Thus, by properscalingof the inlerferogram, conventionalinterferogramanalysistechniqueswillprovideadirect
measurementofthewavefi'ontslope.

3.3.1 Equivalent wavelength (Square wave grating)

In order to derive an equivalent wavelength for a square wave grating with a 50/50 duD, cycle the dominant
fringe pauern in the Ronchigram has to be determined. The shear be_een wavefmn_ (a,b) and (ax), in Fig. 4, is

dominantovertheshearbetweenwavefronts(b,c)fortwo n_asons.Fust,theintensityofthewavefmntu,,thezero

diffractio_order,ismuch higher than the inter_ty oftheothertwowavefronts.Second,thefringepatlemproduced

bom (a,b) and(a,c)areidentical and theyoverpowerthefringepatternproducedfromCu,c).

The shear between wavebunts (a,b) and (a,c) is identical and is equal to

_kx - _ (14)
d



The shear distance is normalized by dividing the shear by the beam radius. Normally, the beam radius is

equal to the radius of the collection lens bccaase the lens pupil is over filled and the distance z is equal to the focal
length of the collection optics.

=
x... D

Substituting the normalized shear into equation 12, the equivalent wavelength for the Ronchigram pn:xluced from
(a.b) and (a,c) is

d (lS')
_'q = 2-_"

The fringe spacing in the Ronchigram is independent of the measurement wavelength. It is only dependant
upon the spacing of the grating and the f/# of the lest beam. This means that [he Ronchi test can be performed with

either a monochromatic or white light source. In addition, the sensitivity of the Ronchi test can be changed by
simply changing the grating frequency.

4. TWO CHANNEL DESIGN

In order to reconstruct the surface contour, two orthogona] slope paRe.ms, either x-slope and y-slope or r-

slope and 0-slope, are required. A single channel Ronchi test can be used to characIerize a static surface by rotating

the grating 900 during the experiment to obtain two orthogonal slope patterns. The oil surface is a dynamic surface

and requires that two orthogonal slope patterns be obtain,_d in real time. A two channel Ronchi test has two separate

arms, one with a ve_.ical grating and one with a horizontal grating. The two channel test can produce two orthogonal
slope patterns in _ time.

4.1 Optical layout

A schematic of the two channel Ronchi test is shown in Fig. 5. A collimated wavefront is incident on the
oil surface. The wavefront reflected off of the surface contains information about the surface contour. The reflected

wavefront is split and directed through two separate channels. One of the wavefronts is focused onto a horizontal

grating by collecting lens, L3, producing a Ronchigram with vertical slope information. The other wavefront is

focused onto a vertical grating by collecting lens, I..2, producing a Ronchigram with horizontal slope information.

"l'he two channels are staggered so that the distance from the oil surfa_ to each collection lens is equal. The
wavefronts leaving lenses LA and L5 are positioned side-by-side on an observation screen.

"" I 1

Figure 5 Two channel Ronchi test



4.2 System tilt

The mrface under test should be located in the front focal plane of the collection optics. The maximum

surface slope that will enter the collection lens of the Ronchi test is dependant upon the f/# of the collection lens.

From the geometry shown in Fig. 6, it is clear that the fill requirement to see a given slope is.

[ = 1 (1_)
# 2 ma(2=)

A graph of the gystem f/_ required for a given surface slope is provided in Fig. 7. The two channel Ronchi test

designed for this experiment is a f/4 system. Therefore a surface _ope of up to approximately 60 pro/ram will enter

the two clannel Ronchi test. The maximum expected .dope of the oil sin-face is 26.7 pm/mm.

I f

collection

lor_ .

Figure 6 Systern geometry
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4.3 Grating frequency selection

One of the advantages of the Ronchi test is that the dynamic range and resolution of the system are

dependant on the characteristics of the gratings and the f/# of the system not the measurement wavelength. Therefore

a simple change of the gratings will permit a different range of deformations to be monitored. This gives the Ronchi

_jstem great flexibility.

The proper grating spacing, d, for a given maximum surface .Cope can be found using equation 17. To

enhance data evaluation, the optimum number of fringes per pupil radius is I0 fringes. Fewer fringes would reduce

the accuracy and mote fringes may introduce additional complexity.

d = 21=.,,
m

wheref =f,w.a//e,,Sd,.=_.,= _m'surface s/opt and m .:f,_se.,per,aSu,s.

(I_)



5. TWO CHANNEL CALIBRATION

5.I Calibration experiment

The two channel Ronchi test was calibrated by testing a known amount of introduced defocus. The &focus

was introduced by translating the collimating lens, LI, in Fig. 5. Defoc_ was _ to calibrate the system for

three rea.u3ns: 1) It is easy to inm3duce. 2) It is easy to analyze. 3) The amount of &focus introduced is directly

to the magnitude of the translation. Three diffea'ent _ square wave grating were used in the

expe_enL Each of the different gratings has a different equivalent wavelength and will thetefme provide a test

of the equivalent wavelength equation for square wave gratings with a 50/50 duty cycle. Table 1 is a listing of all
the trials ran in the calibration experiment.

Tab_ 1 Llm_g of Trials In Two Ckam_ Callbraltom i_mdmmt

Tdad Gr_ Frequency
lmicmmam]

T_
Imm]

! 250 12.10 2.0 1.045

2 250 12.10 3.0 i.623

3 250 12.10 4.0 2.237

4 250 12.10 5.0 2.903

5 150 20.16 3.0 0.950

6 150 20.16 4.5 1.509

7 150 20.16 6.0 2.049

8 150 20.16 7.5 2.588

9 50 60.48 5.5 0.650

I0 50 60.48 g.0 0.882

11 50 60.48 9.5 1.076

Q

5.2 Ronchigram analysis

The two channel Ronchi test produced two Ronchigrams for each trial. These Ronchigrams were of

orthogonalslopepatterns,x-slopeand y-slope.Each slopemap was digitizedand fittoa setof7_..rnikepolynomials.

The two slope maps were then combined to produce the original surface contour by linear combinations of the
Zern_e polynomials:

$.3 Calibration results

Figure 8 is a graph of the data shown in Table 1. The trials for each grating f_equoncy demonstrate a linear

relationship between the amount of lens translation and the amount of introduced defoc_ Multiplying each defocus

value by the g_'opriate equivalent wavelength value produces the r.._dt shown in Fig. 9. All the trials fall upon

the same line. The equivalent wavelength equation does relate data taken with different grating frequencies.

Figure 10 shows the percent error between the data and the best fit line shown in Fig. 9. The average

percent error of the current two channel system is :1:5%. The percent error for mudl amounts of defocus is high_

than five percent. It is speculated that this is because of the inaccuracy involved in placing the gratings at best focus.
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6. PREIJMINARY DATA

The equivalent wavelength equation needs to be modified when the test object is a surface instead of a

wavefront as in the case of the two channel calibrate. The cosine of the reflected angle is multiplied by the

denominator of the equivaleat wavelength equation. Whea the reflected beam is normaJ to the test sudac¢ equation

15 is the Woper scare factor (cm (0) = 1).

d
ZN _. 2_e)

where e - t&_ anf/t _n lht op_ axis of _ _/tas and tht surface _or_d.

(18)



6.1 Diamond machined known_,urface

A diamond machined aluminum sm'face was examined with the two channel Ronchi test. The mrfac¢ was

machined flat except for a 5 mm diamet_ are,a in the center of the surfw, e. This central area con_n_! a 54

micrometer depression. A Ronchigram of the surface and a contour map of the inn'face gene,._¢d from the

Ronchigram information arc shown in Fig. 1I. The two channel system _ the del_ession to be 52.4:1_6
micrometers. The area around the _ion is f]aL

6.20g surface

The_l surface usually has tither a _on _a bump at the location the CO2 beam _rikes the surface.
The dze of the feature can _ changed as we_ as the polarity by adjus_g the size of the incid_t C_ beam and
the laser power level. Fig. 12 shows the Ronchigrams and a contour map genentted from the Ronchigranu for a
bump _ the surface. The C_ beam _ on the surface was 6 mm. The two channel v_em measur_d the bump
to be 17+1 micrometer.

lilt IgQ ¢JggQ •

" ;, R |'. "_ _ J J I EF"'E's

...
i

Figure 11 Diamond turned surface Figure12 Free oll suHace



7.CONCLUSIONS

The Ronchi test can be Ircated as a shearing interferomcter. The number of sheared wavefronts and the

magnitude of the shear is dependant upon the characted_cs ot the grating. The fringe spacing in a Ronchigram
is proportional to the equivalent wavelength of the Ronchi system. The equivalent wavelength is dependant upon
the spacing of the grating and the f/# of the test beam. The sensitivity _ the Ronchi test is both known and variable.
It can be changed by simply changing the grating spacing.

The two channel Ronchi system was calibraled and has an a_m'acy of :1.5%. The preliminary data
¢kmonstmU_ the ability c¢ the Ronchi test to contour an aspbe_ surface.
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ABSTRACT

A noo-c_ta_ (i.e. optical) technique is required to measure the deformation of a flee oil surface under the
influence of a localized thermal load. This deformation is caused by mrface temdon driven thermal convective flow
inside the fluid, and can be as large as 250 um Tlanefore_ conv_ in--try is not possible. Instead, a
Ronchi technique is proposed for contoor mapping the oil surface. This paper presents a design concept for a two
channel Ronchi instrument and some preliminary results from a fuam'bility study _ing • single channel Ronchi
instrument.

1. INTRODUCTION

Scientists and engineers st Case We_.m Reserve Univelsity and NASA Lewis Research Center are
conducting research on • variety of fundamental phenomena inherent in low gravity processes. An _t
phenomenon considered to have • signific._nt impact on processes such as containedess processing and crystal growth
is that of thernu3capillary flow, or fluid flow driven by surface tension. Thermocapillary flows result when
temperature differences arise across a liquid/gas interface. TIz_ differences cause a change in the surface tension
along the interface, which results in _ary flow. Improvements in the understanding of thennoc_inary
flow will help lead to technological breakthroughs in space processing of semiconductor materials.

The ability of the free surface to deform during thermcx_illary flow is an important aspect of this problem
These deformations can alter the mufa_ temperaturec_su'ibmion, the ckiving force in the flow, and the resuJtingfluid

flow patterns, causing an uasteady flow which is deuimental to the crystal growth la'OCeSS. Therefore, the
development and implementation of a technique to study the surface deformation as • function of experimental
parameters such as fluid properties, beating modes, is crucial to the understanding of the underlying physics.

This paper describes the design of a technique for measuring surface deformations of • 3 cm diameter pool

of silicon oil. Since the surface is a fluid, touching it would change its shape. Therefore the technique must be non-
contact, i.e. optical. Two techniques were coasidered: geometric and interferometric. A geometr/cal technique
measures surface slope, while an interferometric technique measures surface height. The geometric approach was
chosen over the interferometric approach for two reasons. First, conventional visible wavelength interferomeuy
would produce a fringe pattern too dense to analyze because of the anticipated deformation range of up |o 250
micrometers. And, while infrared interfefomeuic techniques could produce a resolvable fringe pattern, the infrared
beam might affect the system's thermal loading. Second, geomeu'ic techniques are dependant on the slope of the
surface and are therefore insensitive to any jitter or tilt experienced by the oil surface while in space. One

disadvantage of using geometric techniques is that two orthogonal data sets, either x-slope and y-slope or r-slope and
O-slope are needed to completely recoastruct the raLrfaceshape.

Five classical geometric techniques were considered: Foucauit knife-edge test, Hartmann screen test. wire
tests, grating interferometry, and Ronchi test. The knife-edge and wh-e tests were not chosen because they provide
data for ouly a single zone or diameter, not for the eafire aperture. Tha Hartmann screeu can provide two orthogonal
data sets at oae time, but it has • limited spatial resolution when compared with the Ronchi test The Ronchi test

was choseo as the technique to use for three reasons: the small dimensions of the experimental pool are tailored to
the Ronchi requirement of a collimated beam, _ Ronchi data is less complicated to analyze, and it can be integrated
with phase-measuring techniques.

gpz  /o1. t ?79 / /9%z.



2. BACKGROUND

The Ronchi test was discovered by the Italian physicist Vasco Ronchi in 1923. He noticed that when a
grating was positioned near the center of curvature of• mirror that the image of the grating was superimposed upon
the original grating. The combination ofthe two gratings produced• moire type effect whose pattern depended upon
the aberrations of the mirror. Ronchi felt that this method was • good check for mirror quality)

Oollmafn0
Lmor tams

'_ Tmt Suaam
\

m n, mb0_ t.m,

.... _G_

Figure 1 Single channel Ronchi test

The properties of the Rotghi test can be
tmdermo_ by examining the single channel Ronchi
setup shown in Fig. 1. The gmrce in Fig. ! is • "point
source" created by spatially filtering • HeNe CL= 632.8
am) laser beam. A lens is positioned one focal length
in front of the gimtial filter, producing • collimated
beam of light. The collimated wavef_mt is incident
upon the test surface and reflected to an achromatic
imaging lens. The reflected wsvefrtmt contains
infccmat_ about the surface deformations. The

imaging lens focuses this wavefront onto a Ronchi
grating. 'Ibein'adiancepanem produced on the
observation screen is • shearedinterferogram called a
Ronchigram, where the in'adiance across the pattern is
proportional to the slope across the test surface.

The Ronchl test measures wtvefront aberrations present in • system. Therefore, if there are no aberrations,
the Roncbigram will have no fringes. When the test surface in Fig. 1 is • plane mirror no aberrations are introduced
into the collimated wavefront. Therefore, if the grating is at the focus of the imaging lens, either • bright spot or
• clarkspot is produced oa the observation screen. A dark spot indi_tes that the focused beam is incident upon a
dark band in the grating and • bright spot indicates that the focused beam is incident upon an area between two dark
bands in the grating. Now, if the grating is moved •way from the focal plane of the imaging iem, defocus is
introducecL Defocus appears as straightline fringes in a Ronchigram.

When the surface is •bert•ted, the Ronchigram contains fringes which are pm_rtional to the slope of the
surface. Since the Row.hi tea measures the wavef_ront's dope in • direction perpendicular to the grating lines, it
is necessary to obtain two orthogonM patterns to fully represent the surface shape.

3. CERTIFICATION OF A SINGLE CHANNEL RONCHI TEST

For any measuring instrument, it is necessary to develop • certification technique. For the Ronchi test, this
can be accomplished by introducing t known amount of aberration and them testing to see if that amount is actually
measured. In this section, • certification prooe.._ using defocus is discussed.

3.1 Theory

An ideal spherical wavefront is one which will produce • perfect point image at its focal point. Such •
wavefront is described by,

X 3 4" y2
w(x,.y) -,

2R
where (x_) are pupil coord_mtes, and
R is thewavefrontradius of curvature.

(t)



If the wavefi'ont is ckfocused by an amount Aw(x,y),

w'(x,y) = _x,y). a.,(x,y)

(2)

it will focus at • dighdy different location, R.w_ where c_ is called the longitudinal ray aberration.

error inw0duced by defocus can be deu_bed by,

aw(x,y) =wmo Cx2 * y_)

where w_ _ tke Defoc_ coe_'en:.

The wavefront

(3)

Figure 2 shows a reference wpefront and an abefraled wavefront with a profile function of W(x,y). The longitudinal

aberration, c_ and the transverse aberrloa, r.,, are also shown. The slope error, ¢z, is the angle between the
intersection of the reference wavehont and the aben-ated wavefront terrace normals. The slope error is equal to the

partial derivative of the profile function W with resp_ to y.

w (4)

a - -T_--

.......-- Reference Wavefront
_--- Aberrated Wavefront

W(x,y) y

Z
l

!1 r _..-..R
..

"" e

\X
",,%,. r - pupil radius R - radius of curvature

"-..'_ x, v- pupil coordinates
""_ e.z "- longitudinal aberration

¢y - transverse aberration
¢x- slope error

Figure 2 Comparison of referenceand aben'atedwavefionts

Using similartrianglesand themall angleapproximationitcan be shown from Fig.2 that:

R

¢ .ctR c,--;¢,

where • = pupil radius.

(s)



Since Ronchigrams are in normalized pupil coordinates, it is necessary to normalize x, y, and o.

x _ = x y_ = Y a = _I aw
r 7 r_'

where • = pupil radius and (x_,y _) = normalized pupil coordinates.

(6)

By ml_timfion of equations 4 and 6 into 5, the kmgitudinal and uam'vexae aberrations can be rewritten as:

R: aw (7)_w

_,.-R. E E.- r

R aW R_ aW (8)
_,. , _' E. 7_- T

Taking the partial derivative with respect to y of the defocus term in equation 3, writing it in normalized pupil

coordinates, and subsftuting it into equation 8 yields equation 9.

R2 (9)

• , - -2w_7

The f-number of the system, (f/#), _wn in Ftg. 2 is the radius of carvatnre of the reference sphere divided by the

pupil diameter (2r).

(10)
f R
# 2r

Substituting the f-number into equation 9 provides an equation for the defocus in.a wavefront that is dependant only

upon the amount of longitudinal aberration and the system f-number.

W_O m ---

8 (f)=

(II)

Thus, by simply translating the Ronchi grating, • known amount of aberration can be introduced.

3.2 Measuring defocus

The number of fringes in • Ronchigram is related to the partial derivative of thewavefront aberration 2.

aw m d

W " -"F
where R = radiusof curvature m - number offringesper radius,

and d = gratingspacing.

(12)

Writing equation 12 normalized pupil coordimues gives:

(13)



Takingthepartialderivativeef the defocus term in equation 3 and writing it in normalized coordinates yields:

_Aw(x,y) . 2 wine (14)

Setting the right tides of equalioos 13 and 14 equal and substituting in the definition of the f/# (equation 10) results

in the following relation:

md
_=_

4 (_)

(15)

Thus, the amount of defocus in the wavefront can be determined by cotmting the number of fringes per pupil radius

in the observed Ronchigram.

3.3 Certification experiment

tingle channel Ronchi test shown in Fig.

1 was eertif_ by testing a known amount of
introduced defocus. The grating was initially placed in

the focal plane of the lens and its position was recorded

for • reference value. The grating was then displaced

a known amount towards the lens and the outputfringe

pattern was photographed. An example defocus fringe

is slmwn in Fig. 3. Translating the grating is

equivalent to introducing longitudinalaberration,g,

into the system The number of fringes can be

determined directlyfrom the photographs for each

translation. The experiment was performed with

diffcmmt frequency gratings and different grating

orientations to insure" that equation 15 was correct and

to get a visual feel for the effects of using different

gratings.

Table 1 presents the experimental data for

rationstranslationsand gratingfrequencies.Equation
Figure3 Defocusfringepattern

11 was used to calculate the value of defocus from a

known amount of transk.fion Equation 15 was used to

calculate the value of defocus from an observed numbe¢ of fringes. The difference between the two calculations is
shown in the defocus difference column in Table I. The reason that there are two different values for the f-number

isbecausea portionofthedatawas takenwith thegratingintheverticaldirectionand a portionwas takenwith the

gratinginthehorizontaldirection.The ellipticalbeam Ixuduced by thetestsurface,which isorientedat45°,results

in two different f-numbers's for the different grating orientations.

The defocus values from the two different methods compare very weB. The largest defocus difference is

38 microns. The orientation of the grating and the grating frequency do not Jeem to have any effect on the accuracy
of calculated defocus values. The results show that the theory is correct and that the amount of defocus can be

accurately calculated.
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O.O26

O.O76
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0.117

9.1_I

0.2_9

9._
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(mm)

9.0(Y7

0.001

90_9

9.025

9.o_0

0.o_3

0.036

0.038

9.o_2

0.0O2

0.030

0.000

4..TWO CHANNEL DE.SIGN

In order to fully characterize the surface, it is necessary to measme the surface slope in two orthogonal

directions. The single channel Ronchi system can be used to obc_m two e_hogonal slope patterns by simply rotating

the grating 90 ° during the experiment. However this method only works for static mu-faces like the plane mirror

presently being used to calibrata the system. Since the pool of oil is a dynamic mw/'ace two ortbogonaJ fringe

patterns must be obtained simultaneously in real time. A two channel Ronchi test can produce two orthogonal fringe

patterns in reaJ time.

4.1 Optical layout

Figure 4 Two cham_ Ronchi test



A schematicofz two channelRonchi testisshown inFig.4. The two channeltestwas designedtofiton

a standard 2' by 3' optical breadboard. The space requirements of the optical component mounts are not shown in

Fig. 4, but they were taken into account when parameters such as focal length of the lenses and the diameters of the
elements were chosen.

source d_own in Fig. 4 is a HeNe ('k = 632.8 rim) laser. The light emitted by the Ltu_ _ a fold

mirror (MI) and is directed into a spatial filter (SP). The collimating lens, LI, it podtioned one focal length away

from the spatial filter, thereby producing a collimated beam of light. The collimated beam or plane wavefront is
incident upon the test sample at 45 °. The waveffont reflec_l off of the test sample contains information about the
contour of the test surface. The reflected waveffont is then divided into two wavefronts by the beamsplitter (BS)

and directed through two w.parate arms. One of the wavefronts it focm_ onto a vertical grating by L2 producing

a Ronchigram with horizontal slope infofumlkm, while the other wavefront it focused onto a horizontal grating by

L3 producing a Ronchigram with vertical slope information. The two slope maps are imaged by lem_ L4 and L5
onto the observation screen The lenses LI-L5 were chor_ to be 8chrom_ to insure thai minimal amounts of

_rical aberration are introduced.

wavefronts exiting L4 and L5 are positioned dale-by-side on an observation screen as pictured in Fig.

4 by the fold mirrors, M3 and M4. Additional optics are required in order to form an image of the two Ronchigrams

onto a video camera.

4.2 Sample and sample mount

The test sample to be used in the two channel Ronchi getup was designed and manufactured by

utu_graduate mech_cal englneen and applied optics students at Rooe-Hulman. It was designed to simulate the
free oll surface. Three criteria were used in the design of the test uunple: the surface must be 3 cm in diameter,

it must be capable of crcadng both odd and even deformations, and it must be large enough to insure that stress

fringes from its mounting do not overlap with experimental deformation fringes. _ test sin-face is a circular piece

of plexiglas mounted between two metalrings. The back metal ring is _ to a tip-tilt mounL A black circle
of 3 cm diameter is centered on the plexiglas surface to fiducializc the test surface.

Cross Section View

Mount

Ths_n_wlDef°rmsti°n_ I...

Mount

Figure 5 Arrangement of deformation screws

Deformations in the test sm'face are created by

adjusting the position of one of three threaded screws
which are glued into the back side of the plexiglas.
The three screws are held in place with a threaded nut

which is attached to a metal pla_ across the back of

the sample mount. The metal plate it thick enough to
insure that the plexiglas surface willdeform before the

metal plate. The middle screw is locatedatthecenter
of the 3 cm test area and the other two screws are

vertically displaced 1 can on each side of the center
screw. The screws can be translated forward or
backwards to create an even deformation in the surface

(a bump o¢ a dimple). AJa odd deformation (a S-
shaped defommtion) can be created by a combination
of L"rew adjustments,screwing the top screw back and
the bottom screw forward or vice versa. The

8rrangetneot of the screws in the. back oftheplexiglas

isshown inFig.5.

4.3 Vignetting

The next step is to bring the two designs, optical and mechanical, together to insure that no unwanted

vignetdng is introduced into the system Vignetting occurs when the outer portion of the beam is partially blocked

by the components or component mounts in the system. When designing an optical system, vignctting calculations



areimportanttoinsurethatthesizes of the optical components meet the beam size requirements of the experimenL

The actual vigneu.ing calculations for the two channel Ronchi lest are not provided, but some of the guidelines

followed are provided.

First, when ordering optical components it is a good role of thumb to allow 20% of the component diameter

to be used for the mounting of the _t. Second, be aware of any surfaces in the design that are tilted relative

to the beam path, like the test surface and the beamsplittm" in the two channel Roochi design. The beam that strikes

the test surface needs to be large enough to overfill what appears to be an elliptical test surface due to the tilt of the

surface and the clear aperture of the beamsplitter, which is reduced because of tilt, must be im'ge enough to allow

the reflected beam to pass through the mourned beamsplitu_. Third, be sure that none of the compoeents ou the

table are blocking a beam that is propagating towards another compcmmt. For example, the mounts for mirrors M3
and M4 in Fig. 4 were designed to inmre that tbe nmunt for M4 did not block the beam from M3 on its way to the
observation screen. Fourth, be sure that the output beams can be petitioned ou the output device. In Ftg. 4 the

output device is the observation screen.

4.4 Grating frequency selection

One of the major advantages to using the Ronchi test is that the dynamic nmge and resolution of the system

are dependant only on characteristics of the grating used. Tbe_fore if the experiment ever n_luires that a different

range of deformations be monitored then only the grating needs to be changed, not the whole setup. This gives the

system great flexibility.

In order to choose the proper grating spacing one needs to know the maximum anticipated surface slope,

the relative sphere radius of curvature, and the maximum munbex of fringes per pupil radius. The proper grating

spacing for a given experiment can be calculated using equation 16, where R is the reference sphere radius of
curvature, o_ is the maximum anticipated surface slope, and m is the desired number 6tinges per pupil radius.

2 R a_. (16)
d=

m

E:

-2a_

\ /
. /

- =.:_68mm . - _/d
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Beam Striking Point (ram)

6 Anticipmed doformatious

In the Ronchi test, the reference sphere

radius of curvature is determined by the imaging

lens focal length. For the free oil surface, the

anticipated maximum slope was found from Fig. 6
to be 26.7 um/mm. To enhance data evaluation,

the optimum number of fringes pet pupil radius is

10. Fewer fringes would reduce accuracy and

more fzinges may introduce additional complexity.

4.5 Diffraction effects

The Ronchi test can be viewed from a

physical optics point of view as • diffraction

phenomenon. Just as • diffraction pattern has

higher diffnc_ orders so does a Rouchigra_-

The clarity of the fringe paUem in the output

Rouchignun can be increased by removing some of

tbe mire of the higher diffzacled oe_rs from the

pauem. A _ fdlering exit was
performed to remove some of the noise and it had

some positive results. A better approach is to use a sine grating instead of a step grating. The sine grating produces

only the diffraction orders 0, and :el. It will remove higher order noise from the fringe patterns and increase fringe

clarity.



$.CONCLUSIONS

A twochannelRoochi instrummt has been designed to contour the free oil surface. It can produce two

orthogonal fringe patterns at the same time, thus allowing a dynamic surface to be mooitmed in real time. it is also

designed to allow for easy implementation of • phase measuring capability in order to distinguish between bumps

and dimples on the ra_face.
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Sensitivity of two-channel Ronchi test to grating misalignment
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ABSTRACT

The Ronchi testisperformed by placinga periodicgratingator near the focus ofan optical

system. Like most geometricte_, the Ronchi testmeasures wavefrontslopeinsteadofthe

contourofthe wavefrontlikeconventionalinterferometry.Thereforewhen a Ronchi testisused to

determinethe contourofa non-_rmmetric surface,two orthogonalslopeinterferogramsor

Ronchigrams are requiredtoreconstructthe surface.A two-channelRonchi testwith a horizontal

and a verticalgratingcan be used toreconstructa non-_mmetric testsurface.This paper

investigatesthe errorsintroducedby differentrotationaland translationmisalignments ofthe

gratingsinthe two-channelRonchi testrelativetoone another. The Ronchigrams are analyzed

with a modal techniquebased on Zernikepolynomials.The severityofeach misalignment is

dependant upon the frequencyofthe gratingsused and on the f/#ofthe system.

1. INTRODUCTION

The Ronchi test is performed by placing a periodic structure at or near the focus of an
optical system and monitoring the interference pattern or Ronchigram produced. The Ronchi test

can be explained as a geometric test or an interferometric test. From a geometric ray point of
view, the fringes in a Ronchigram are the result of the deviation of a ray from its ideal path

because of slope errors. As an interferometric test, the fringes in the Ronchigram are produced
from the interference between overlapping diffraction orders. The overlapping diffraction orders
are sheared versions of the original wavefront. Therefore the Ronchi test can be approached as a
shearing interferometer.

Shearing interferometersmeasure the slopeofa wavefront insteadofthe heightofthe

wavefront likeconventionalinterferometers.One ofthe disadvantagesofshearinginterferometers

isthe requirement oftwo orthogonalslopemaps ofthe surface,eitherx-slopeand y-slopeor r-slope
and 0-slope,tocompletelyreconstructa surface_vithoutsymmetry. Ifthe surfaceunder testis

rotationaUysymmetric or ifithas a staticcontoura singlechannel Ronchi test,Fig.1,could be

used toreconstructthe surface.The two orthogonalslopemaps couldbe generatedby rotatingthe

gratingninetydegreesduringthe experimentor by takingone photograph and analyzingitfor

both slopemaps. However, ifthe surfaceunder testisnot rotationallysymmetric and isdynamic,

a two-channelRonchi instrumentmust be implemented,Fig.2.

The main differences between the two-channel Ronchi instrument and the single channel

instrument are the addition of a second measurement module and a pupil relay module. The relay
module creates an intermediate image of the surface under test at the plane of the second
beamsplitter. The image created by the relay module is the object for both of the measurement
modules. The addition of the second memmrament module allows orthogonal slope information to
be obtained in real time. One of the measurement modules obtains a vertical, y-direction, slope

map of the test surface, S, with a horizontal grating. The second module obtains a horizontal, x-
direction, slope map with a vertical grating. The output of each channel is imaged onto an
observation screen. It should be noted that the orientation of the image of the surface at the
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Figure 1 Single channel Ronchi system Figure 2 Two-channel Ronchi system

observation screen for the two-channel system isopposite to the orientation in the single channel

due to the addition of the pupil relay module.

The wavefront at the observation screen is the wavefront reflected off of the test surface

convolved with the Fourier transform of the grating transmission function I :

(1)

provided that the surface under test isin the front focalplane ofthe relay module and that the

observation screen is in the back focalplane of the measurement modules. Therefore the grating

transmission function is the important mechanism in the Ronchi test. It dictates how the fringes

in the Ronchigrams should be interpreted.

2. INTERFEROGRAM ANALYSIS

Whenever two coherent wavefronts are at the same Point in space, their amplitudes

superimpose to create an interference pattern. The interference pattern contairm information
about the differences between the two wavefronts or their optical path difference (OPD). The two

dimensional irradiance pattern created by the interfering wavefronts is known as an

interferogram.

2.1 Interferogram theory

In interferometry, the fringe spacing in an interferogram is proportional to the wavelength

of light treed in the interferometer. The irradiance, E(xj'), at any point in an interferogram can be

expressed as a function of the measurement wavelength and the optical path difference (OPD)

between the two interfering wavefronts.



(2)

The OPD in a shearinginterferometerisgivenby the differencebetween the wavefrontand the
sheared wavefront.

(3)

The relationshipbetween the differentialwavefrontand the slopeof the wavefront isgivenby:

where a(zO) - wave/tom slope.

(4)

Substitutingequation4 intoequation2 givesthe irradianceequationfora shearing interferometer

which isalsothe irradianceequationforthe Ronchi test.

(5)

Thus, by proper scaling ofthe shear interferogram via the equivalent wavelength, conventional

interferogram analysis techniques can be used to provide a directmeasurement of the wavefront

elope.

2.2 Ronchi test equivalent wavelength

To properly interpret a Ronchigram it is necessary to derive an equivalent wavelength, _,
for the Ronchi test. The type of grating used in the Ronchi test governs how the fringes in the
resultant interferogram or Ronchigram should be interpreted. An expression can be derived for
the equivalent wavelength of the Ronchi system based on the characteristics of the grating and the

geometry of the setup.

Since the lateralplacement ofthe gratinginthe Ronchi testisarbitrary,the amplitude
sinusoidalgratingcan be modelled as an amplitudecosinegratingwhose transmissionfunction
and Fouriertransform are:

._i[*006(5-_)_ | &(X)÷ 6(x-d) ÷ &_g+d)

where d 1 _e 8r_g _r_.

(6)



The Fourier transform of the amplitude cosine grating is a set of three delta functions.
Substitution of equation 6 into equation I yields the expression for the wavefrent at the
observation screen.

The wavefront at the observation screen is three sheared versions of the original wavefront.

irradiance at the observation plane is given by:

(7)

The

_,zs) - <lu(¢z,)Iz,

_. y3)"Eo._ .E..(,.,;÷,;,_).(,.u;.÷u;,.).(u_u;.u;.J. (8)

The interferencefringesina Ronchigram are produced by the overlappingwavefronts

which are the cross-termsinparenthesisinequation8. The fringescorrespondtochanges in

wavefrontslopein a directionperpendiculartothe shear direction.A low spatialfrequency

gratingproduces a small sheardistancewhich inturn produces almostcomplete overlapbetween
the wavefronts. High spatialfrequencygratingsproduce largeshear distanceswhich reduce the

amount ofoverlap.Thereforehighfrequencygratingsdo not testthe fullapertureofthe
wavefront.

There are three sets of cross-terms in equation 8. Therefore there are three sets of sheared
wavefronts: (a,b), (a,c), and (b,c). In order to derive an equivalent wavelength for the sine grating,

the dominant fringe pattern in the Ronchigram must be determined. The shear between
wavefronts (a,b) and (a,c) is dominant for two reasons. First, the intensity of the wavefront u,, the
zero diffraction order, is much larger than the intensities of the other two wavefronte. Second, the
fringe pattern produced from (a,b) and (a,c) are identical and they overpower the fringe pattern
produced from (b,c). The equivalent wavelength is dominated by the shear between (a,b) and (a,c).

The shear between wavefronts (a,b) and (a,c) is identical and is equal to :

Az=-_
d

wheref =focallen_, and d - gr_ ._aclng.

(9)

Because interferograms are analyzed in normalized coordinates, the shear distance should be
normalized by the maximum radius, x_,, the radius of the exit pupil of the system, which is the
largest radius wavefront which can be tested.

_,. ____. __V_
• m dzm

Replacing x_ by D/2 where D is the diameter ofthe exitpupilofthe system,gives:

Substituting the normalized shear into the definition for )_ results in:
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The equivalent wavelength of the Ronchi test is independent of the measurement

wavelength. It only depenck upon the spacing of the grating and the f/# of the system. This

means that the Ronchi test can be Performed with either a monochromatic or a white light source.
In addition, the sensitivity of the Ronchi test can be changed by simply changing the grating

frequency.

2.3 Surface reconstruction from slope information

Wavefront phase estimation from slope data isdivided into two categories,modal and

zonal. Zonal techniques estimate the phase value over a localregion while modal techniques

determine the coefficientsof a set of aperture polynomials._ Rimmer developed a method for zonal

estimation,s An example of a modal technique is the use ofthe Zernike polynomials to produce a

global fitof the data.4"5 In both cases,a leastsquares estimation isused to reconstruct the

wavefront phase. Work has also been published on the estimation of slope data with the use of

Fourier transform techniques._v This paper uses a modal algorithm to reconstruct the wavefront

shape through a linear combination of Zernike coefficientswhich are individuallyfitto orthogonal

x- and y-slope data sets.

All of the trialspresented in this paper were analyzed with a modified version of the

FRINGE software originallyfrom the University ofArizona. Table 1 isa listingofthe firsteight

Zernike polynomials. Table 2 provides the relationships between the Zernike coefficientsof the

slope data and the Zernike coefficientsofthe wavefront shape. For example, the wavefront x-

astigmatism coefficient,A4, isdependant upon the x-tiltfrom the x-slope map, B1, and the y-tilt

from the y-slope map, C2. Finally,the Seidel coefficientscan be calculated from the firsteight

Zernike coefficientsas shown in Table 3.

Table 1 Firsteight Zernike polynomials

Term Aberration

0 Piston 1

1 x-tilt x

2 y-tilt y

3 defocus 2(x_+y_)-I

4 x-astigmatism x_-y _

5 y-astigmatism 2xy
6 x-coma 8(xS+xy_)-2x

7 y-coma 3(x2y+yS)-2y

8 spherical 6(x2+y_f-6(x_+ys)+i



Table 2 Wavefront Zernikecoefficientsfrom linearcombinationsofelopeZernikecoefficients

Term Aberration Combination

A1 x-tilt cannotbe determined

A2 y-tilt cannot be determined
A3 defocus (]31+C2)/8-A8

A4 x-astigmatism (B1-C2)/4

A5 y-astigmatism (B2-C1)/4
A6 x-coma (B4+B3+CS)/9

A7 y-coma (B5-C4+C3)/9

A8 spherical (B6+C7)/16

B coefficients are the x-slope.
C coefficients are the y-slope.
A coefficients are the surface shape.

Table 3 Relationshipbetween Seideland Zernike coefficients

Seidel term Zernikecombination

Tilt Magnitude

Angle

((A1-2A6)2+(A2-2A7f) m

Tan" ((A1-2A6)/(A2-2A7))

De focus 2A3-6AS±((A4)2+(ASf)m

The signofthe radicalischosentominimize the magnitude.

Astigmatism Magnitude ±2((A4)2+(A5)_)m

Angle 0.5Tan "t(AS/A4)
The sign of the radical is opposite the sign used for defocus.

Coma Magnitude 3((A6)2+(A7)_) m
Angle Tan "1(A7/A6)

Spherical 6A8

3. EFFECT OF GRATING MISALIGNMENT

When alignedcorrectlythe gratin_ inthe two-channelRonchi testshould be at bestfocusof

the system,perpendiculartothe opticaxis,and orthogonaltoeach other.However, misalignments
can occur inthe placement ofthe gratingswhich can produce measurement errors.The gratings

have sixdegreesoffreedom, threerotationaland threetranslationalas shown in Fig.3.

Experiments were performed with an f/4,two-channelsystem shown in Fig.4 to

investigatethe effectofeach misalignment on the system performance. In each case,the x-elope

gratingwas tmeclas the referenceand they-slopegratingwas manipulated relativetothe

reference grating. The gratings used in the experiments were 50 lp/in, 50/50 duty cycle square
wave gratings. The equivalent wavelength for these gratings can be approximated as the
equivalent wavelength for the amplitude sinusoidal gratings. The collimating lens, L1, was
defocused for all the experiments so that there was a sufficient number of sample points across the
aperture. This is analogotm to displacing the grating away from focus. Defoctming the collimating
lens produces an initial "tilt" fringe pattern to be produced in both channels. The number of tilt



Figure3 Geometry todeterminetiltfringes Figure4 Two channel Ronchi system

fringescan be determined from similartrianglesinFig,5 and from a knowledge ofthe grating

frequencyused inthe experiment.

= c,v E,v

where _, - #_ d/sm,cefromthe_'aan$tofocus.
v - #ra_ Ire_ency.and//#- #z sy_em/-number.

J

(12)

The Wa,,d term is the initial aberration measured
in the x-slope or reference channel while W_,bl e
is the initial aberration measured in the y-slope
or test channel of the two-channel Ronchi

system.

3.1 Rotation about the optic axis

The f'n'stdegreeoffreedom testedisa
f _ rotationabout the opticaxis. The fLxedx-slope

Figure5 Geometry todeterminetiltfringes gratingand the variabley-slopegratingareat
the focalplane ofthe system and are
perpendicularto the opticaxisbut they are not

orthogonalto each other.The y-slopegratingisrotatedby an angle 0. This rotationreducesthe

amount ofy-tiltinthe y-slopemap by cos({})and increasesthe amount ofx-tiltin the y-slopemap

by sin({}).Thereforea measurement errorisintroducedintothe C1 and C2 terms inTable 2.

cI - _ _(o) c2. E,.._v_(o) (13)
Y/#

To determine the effect of such an error, the relationships in Table 2 and Table 3 were
simulated with a spreadsheet program. The B1 term was set equal to the expression given in
equation 12 (ideal case), the C1 and C2 terms were set equal to the expressions given in equation
13 (error ease), and all the other B and C terms were set to zero. The misalignment causes an
error in the amount of Seidel defoctm and astigmatism measured. The error in the astigmatism is
twice the defocus error. The results of the theoretical model for the Seidel astigmatism is shown in
Fig. 6. Figure 6 compares the magnitude of the error for different grating frequencies and system
f/_} iS.



Generally, a misalignment is not critical until it alters the amount of aberration measured

by a quarter of a wave. The sensitivity of the Ronchi test to non-orthogenal gratings is directly

proportional to the grating frequency and inversely proportional to the system f/#. Figure 7
compares the experimental results with the theoretical model for non-orthogonal gratings. The

experimental data agrees with the theoretical prediction. A rotation of ±4" is acceptable for the

f/2.25 system while a 50 lp/in grating while only a rotation of ±2 ° is acceptable for the _mme system

with a 100 lp/in grating.

Effect of Grating Frequency sad f/# Experimental & Theoretical Comparison
Rotation about the Optic Axis Rotation about the Optic Axis

I2-i I°8 i!i0.6 ......... :

1.5 ................................... 0.4 •
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Figure 6 Comparison of different grating

frequencies and system f/#'s

-15 -10 -5 0 5 10 15

Rotation Angle [degrees]

Figure 7 Comparison of experimental and
theoretical data

3.2 Rotation parallel to the grating structure

To test the effectof rotation parallelto the grating structure the fixed and variable grating

_b

Y

Figure 8 Geometry for rotation parallel to

grating structure

are at the focalplane of the system and are

orthogonal to each other but the variable grating

is not perpendicular to the optic axis. As the

grating istiltedthe number of fringes in the test

channel Ronchigram increase. This

misalignment altersonly the C1 term not the C2
term. The theoreticalmodel for this

misalignment isderived from the geometry

shown in Fig. 8. Figure 8 shows the wavefront

leaving the collectionlens and coming to a focus.

A grating is shown in its aligned position and

then in its misaligned position.

In order to determine the number of

fringes in the Ronchigram, it is necessary to

know the amount of the grating which is

illuminated. This iB determined by calculating

the length of the line segment ah in Fig. 8. The

equations for lines 1, 2, and 3 are:



z z = 2 J/# y (34)

Z,_2 _ = -2.## y (lS)

,Une3 z - tin(O)y + 'r (16)

The coordinates of points a and b can be found by computing the intersection of the appropriate

lines. The number of fringes produced in the Ronehigram from the line segment ab is:

(17)

Theoretical models were generated with the C2 term equal to the expression given in

equation 17. The only Seidel aberration that was affectedby this misalignment was astigmatism.

Figure 9 compares the amount ofaberration introduced for various grating frequencies and system

f/#'s.Once again the amount of aberration introduced isdirectlyproportional to the frequency of

the grating and inversely proportional to the system f/#. However, a change in the system f/#will

cause a slightlygreater change in the amount of aberration introduced than a change in the

grating frequency would. Figure 10 shows the comparison of the experimental results and the

appropriate theoreticalcurve for the system shown in Fig. 4. Both curves have the same form

although the theoreticalcurve i$ slightlyhigher than the experimental curve. This can be

accounted for in the inaccuracy ofthe measurement of the system f/#. The theoreticaldefocus

curve liesupon the x-axis.

Effect of Grating Frequency and f/#
Rotation Parallel to Grating Struture
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Figure 10 Comparison of experimental and
theoretical data

3.3 Rotation perpendicular to the grating structure

A theoretical model for the mi_alignment of the test grating perpendicular to the grating

structure has not yet been developed. The area of the grating that is illuminated is identical to

the area of the grating that is illuminated in the case of rotation parallel to the grating structure.

The difficulty is that rotating the grating in this manner cauves t_e fringes to "fan out', expanding
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Figure II Experimental resultsfor rotation

perpendicular to the grating structure

on one side of the Ronchigram and compressing

on the other side. Figure 11 chows the

experimental results. This misalignment does

not have a significanteffecton the performance

ofthe system shown in Fig. 4.

3.4 Translation along the optic axis

The ftxed and variable grating_ are

perpendicular to the optic axis and are

orthogonal to each other, but the test grating is

displaced along the optic axis. Displacing the

grating towdrds focus reduces the number of

fringee that are present in the Ronchigram

while displacing the grating further away from

focus increases the number offringes. This

misalignment introduces an error into the C2

term.

ExVC2. + __
//#

where 8_= = thex,wunt ofr_a/aW, aton$#_ opec _.

(18)

This error should affectboth the Seidel defocus and astigmatism coefficients. Translating

the grating further from focus will cause an increase in the amount of astigmatism measured while

not changing the amount of defocus. This isbecause the variable channel Ronchigram willhave

more fringes than the fixed channel Ronchigram. The software characterizes the additional fringes

as astigmatism. Translating the grating towards focus will increase the amount of astigmatism

and decrease the amount of defocus measured. This isbecause the test channel Ronchigram will

have fewer fringes than the reference Ronchigram.

Figure 12 compares the effectofthis misalignment on systems of various f/#% and grating

frequencies. The magnitude of the error isdirectlyproportional to the grating frequency and

inversely proportional to the f/#ofthe opticalsystem. Figure 13 shows the agreement between the

experimental resultsfor the eTstem shown in Fig.4 and the theoreticalmodel for that system. A

translation misalignment along the optic axis becomes important for the f/2.25 system at ±0.5 mm

for a 50 lp/in grating and ±0.25 mm for a 100 lp/in grating.

3.5 Translation perpendicular to the grating structure

Displacing the test grating perpendicular to its grating structure relative to the reference

grating has no effect on the spacing of the fringes in the Ronchigrams. However if this

displacement can be performed in a controlled periodic motion, for instance with a piezo-electric
transducer, then it can be used to implement phase measuring techniques, s

3.6 Translation parallel to the grating structure

Translation parallel to the grating structure does not have any effect on the spacing or

orientation of the fringes in the Ronchigrams.
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4. CONCLUSIONS

One method to fulfill the requirement of two orthogonal slope maps to reconstruct a surface
is to use a two-channel Ronchi instrument. The effect of different grating misalignmente were
investigated. The results presented are based on the use of Zernike polynomials to fit the slope

data and then using linear eomhinations of those Zernikes to reconstruct the surface shape. Of the
six possible misalignments only four had an effect on the performance of the two-channel Renchi
instrument, the three rotational misalignment8 and the translation along the optic axis.

The severityofthesemisalignmente isdependant upon the frequencyofthe gratingused

in the testand on the f/#ofthe system. Fast opticalsystems with higherfrequencygratings

requiremore care in the alignment ofthegratingsthan sloweropticalsystems with low frequency

gratings.The misalignmente become criticalwhen they alterthe amount ofaberrationmeasured

by a quarterofa wave, _/4. The pointat which each misalignment becomes criticaldepends
upon the characteristicsofthe system and gratingbeing used. The two most critical
misalignments, independentofsystem specifications,are translationalongthe opticaxisand

rotationabout the opticaxis.
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Vector formulation for interferogram surface fitting

David J. Fischer, John T. O'Bryan, Robert Lopez, and H. Philip Stahl

Interferometry il an optics] testing t_chnique that quantifie= the optical path difference (OPD) between •
lwi'ecence wave front and • test wave front bseed on the interference of light, _ are formed when
the OPD is an integral multiple of the illuminating wsveiength. The resultant two-dimenmonaJ pattern
k caged an iaterferognun. The function ofany int, erferocram ana]_dm program is to extract thi= OPD
and to produce • representation of the test wave front (or surface). Thk m accomplished through •
thrm_-mA_p process of mtmpling, ordering, and fitting We dr_lop a l_q_]ized _*•l_brs vector-

n_mtion mode] of the inte_erogrmn mtmpling and fitting process.
word_' ][nterferometry, polynomial fitting, opt/ca/te_J.ug .

1. I_roduction

Whenever two coherent wave fronts exist at the same
point in space at the same time, they superimpose.
The irradiance value at that point is determined by
the optical path difference (OPD) between the two
wave fronts. Interferometry uses this phenomenon
to quantify the shape of a given surface or wave front
relative to some reference. The two-dimensional
irradiance pattern created by the OPD between the
test and reference wave fronts at all points is com-
monly called an interferogram. The challenge is to

-extract a representation of the test surface (or wave
front)from suchan interferogram (assumingthatwe
have perfectknowledge of the referencesurfaceor
Wave front).Thisprocessisaccomplishedby athree-

stepprocess: datasampling,ordering,and fitting.
While the sampling and ordering steps can be

accomplishedby a number of differentmethods,
fringedigitization,phase-measuringinterferometry,
or Fourierdecomposition,to produce a convenient
representationofthesurfaceunder test,thissampled
and ordereddata (regardlessof how they were ac-
quired)aregenerallyfittosome polynomialset(such
astheubiquitousZernikes).FringedigitizationsoR-
ware has been available to accomplish this process
since the 1960's I and has been discussed at length for
Zernike polynomials by using conventional summa-
tion notation with some matrix notation, s-6

Zernike polynomials are used because they form a

Theauthor, =re with the Ro,_Hulman Im_tute of T_hnolo_y,
W_mmh Avenue, Tin're I_ute, Indiana 47803.

Remived 9 July 1992,

0003-6935/93/254738-06106.00/0.
© I_ _ Sod_ ofAmmca.
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basissetforcircularapertures. But they are not a
basissetfornoncircularapertures. In thesecases
other polynomial sets,such as Zernike--Tatian6 or
Zernike-Mahajan7.spolynomials(forannulus aper-
tures)and Legendre' polynomials(forrectangular
apertures),may providebetterresults.Ideallyan
interferogramanalysissoRware packageshouldallow

foreasysubstitutionbetween theseand otherpolyno-
mial sets;however, most programs are developed
exclusivelyforZernikepolynomials. The firststep

indevelopinga more generalsoftwarepackage capa-
ble of using any basis set is to develop a general
mathematical model of the fitting process, completely
independent of any specific polynomial set.

In this paper we review the interferogram analysis
process (sampling, ordering, and fitting) and develop
a linear-algebra vector notation that dearly and
conciselydescribesthe interferogramsampling and
fittingprocess. The developmentiscompletelygen-
eral (i.e.,not limitedto Zernike polynomials)and
assumes onlythatthe polynomialsform a basisset.
The approachperformsa least-squaresfitofthedata
tothe polynomialset,orthogonalizesthisresultwith
a Gram--Schmidt algorithm, and solves for the final
weighting coefficients of the initial polynomial set
with a backsubstitution technique.

2. _t_e_rogrmm.R_ml_ls

Because an interferogram has nearlyinfiniteresolu-
t/on,the actualnumber of pointsthatcan be mea-
sured is limitedonly by the sampling technique.
There aretwo main methods foracquiringthe data:

digitizationand phase.measuring interferometry.
With digitization,data pointsare acquiredby sam-

g along the center of the light or dark fringes.
y the interferogram is photographed, and the



image isplacedon a digitizingtabletwhere the data
pointsare digitizedby a human operator.Alterna-
tively,theimage canbe acquiredwitha videocamera
and digitizedby image-proce_ingtechniques.Phase-
measuringinterferometryby contrastisan electronic
processwhere a videocamera samplesthewave-front
phase ateverypointwithinitsdetectorarray--thus
creating a high-density, uniform grid of data. An
illustration of the difference in the two techniques is
shown in Figs. 1 and 2. In either case the function of
thesamplingprocessistoacquiredataintheform m,
=,y,where x,y givesthepositionofthepointand m is
theorderoftheOPD atthatpoint.

Once the interferogramhas been sampled, the
acquired data must be ordered. This is because
interferometry measures the wave-front phase ¢ (or
OPD) in units of modulo 2Tr (or modulo k). Thus,
eventhoughapointintheinterferogramrepresentsa
quantitygreaterthan 2_, no measured quantityis
largerthan 2_. For example,an x,y pointmay have
a phase of 9_, but the measured m willequal 0.5,
which isfound by takingthe magnitude modulo 2_r.
Therefore the phase must be artificiallyrecon-
structedby ordering the data. This is done by
assigningintegerordernumber valuestoeachseries
ofmeasured datapoints.
For manual orvideodigitization,datapointsalong

a given fringeallhave the same order,and each
adjacentfringehas an incrementallylargerorder
number. Typicallysuch data consistof integerm
values,regardlessofwhether one digitizesbrightor
dark fringes.Assignment ofthesevaluesisaccom-
plishedby thehuman operator,inthecaseofmanual
digitization,or the videodigitizationsoftwareitself.
Alternatively,a phase-measuring interferometer,
which is not confined to sampling only along a given
fringe, measures fractional values of m. However,
its data are still limited by the modulo 2_r condition
and must be orderedby aprocesscalledphaseunwrap-
ping.

To illustrate the sampling and ordering process,

Fig. 2. When an interferogram k munpled by phue-meuuring
interferometry, data point8 are placed at inch detector location,

usually rmulta in • uniform high-dan_ty rumpling of the
pupil.

5_,...). If the pattern is sampled on each dark
fringe, all the m values will be 0.5. In the typical
ordering process, these fringes will be assignedvalues
ofm = 1,2,3,4,5. Clearlythe resultrepresentsa

parabolicwave front{Fig.4),but thereisa constant
phase offsetbetween the originalwave frontand the
reconstructeddata. To extractthe originalwave
front,it isnecessaryto fitthe ordered data to a
parabolicfunction.Furthermore,ifthiswere a real
wave frontwith aberrations,the onlyway to deter-
mine theircontributionis to perform a general
polynomialfit.
Fittingistypicallyaccomplishedby a least-squares

method with a Gram--Schmidt orthogonalization.
TraditionallyinterferogramsarefittoZernikepolyno-
mialsforseveralreasons. Zernikeslooklikeclassi-

calSeidelaberrations.They providegoodresultsfor
the circularapertureinterferogramof most optical
components. And, sincethey are orthogonal,they
are easy to manipulate. Thus it is possible to add or
subtractcoefficientswithout seriouslyaffectingthe

qualityof the fit.In generalthesecoefficientspro-
videinformationabouthow fiatthesurfaceis,whether

consideraone-dimensionalparabolicwave frontinter- _"_--_--_ I i !_-/tferedwith a planarwave frontto producean irradi- !
ance pattern (Fig. 3). From the irradiance profile it * ..... :

is easy to visualize how an interferogram measures _ [4 i 1 1 i 4 /

the totalphasemodulo2_. Bright ffinges occur for _'---_--t' i i .....even multiplesof_r(i.e.,¢ = 0,2_,4_r,...),and dark

_:-:--4--_-_-_-_-_-_-_---,---+,,. ! - ,*----t/ .........fringes occur for odd multiples of _ (i.e., _ = _, 3_,

t ,.....

Fig. $. Tel) mn'_, Om_lim_ionsl _li_ of • parabolic wave
front. Bottom curve, l_mdtLnt irmdiance pattern formed when

Jlioe int_rf_x_ with • phme _ve front. The plum adong
Fig. I. When an tnterferogrmm iJ _mpled by digitization, data the bottom of the graph reprwent data points sampled at irradi.
points are tmmlly placed along each fringe (either bright o_ dark). =nee minims.
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3. Victor Formulation

K Ideal Surface

The surface height function at any point in the exit
pupil Z(x, y) can be represented by a linear combina-

tion of M polynomials F(x, y) and their weighting
coefficientsG:

M

z(x,y) = _: _(x,y)Gj, (1)
j-1

where the polynomials are typically a iRandard set
" such as the Zernlke polynomials. If the coefficients

are known, the surface function at any given point is
found by summing the product of each polynomial
multiplied by its coefficient. However, in optical
testing the _oefficients are not known. Thus to
determine a representation of the surface function
one mamples and orders the wave front at many
discrete points, fits these data to a polynomial set, and
solves numericallyforthecoefficients.

B. DiscreteData

As discussed in Section 2, the first step in interfero-
gram analysis is to sample (and order) the continuous
surface function producing a set of N discrete data
points. With Eq. (I)each sampled pointinthepupil
(z,, Yr) has a measured value Z, (where r is the sample
index) that can be represent_=d by a linear combina-
tionof M polynomials and coefficients:

z_:. y,) = _ _{x. y,)Oj, (2)
j-l

where N > M. Alternatively, the value at each
mample point .can be expressed as a matrix of M

polynomials multiplied by a matrix of M coefficients:

[z,] = [F,(=_,y,),..., rg=,, y,)] . (3)

Now, if the sampled and ordered data are thought of
a _quence of N points,

(4)

the complete let of all N data points can be repre-
sented as a matrix of polynomials multiplied by the
coefficient matrix:

= • " " . (s)

LF_(x_.y.). .F_{x..y_)JLG_J

To simplify this notation, we define three vectors.
First, the measured values are defined as a vector
with N rows. Second, each polynomial Fs evaluated
over all N data points is a vector with N rows. Third,
the M coefficients are a vector with M rows:

"Fj(x. y_)'

.Fj(xN,yN),

, G= . (6)

.M

z= , Fj=

With this notation, the sampled data can be repre-
sented by

(7)z = IF=.... , F=}G.

C. Fittingto the Polynomials

The second step in solving for the polynomial coeffi-
cients is to fit the N data points to the polynomial set.
This is typically accomplished with a least-squares
method, where S is defined as the sum of the square
of the difference between the data points and the
fitted polynomials. With the vector notation, S is
given by

s = I[Z - IF,, ..., ru_;]l', (8)

or, as more commonly expressed by summation nota-
Lion,

s= _: z,- o_(_.y,) , (9)

If a perfect fit were possible, S would be equal to zero,
because there would be no difference between the
measured values and the representing polynomials
evaluated at the correspondingpoints. However,
there are always differences between the real surface
and its representation. Therefore S is nonzero.
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The function of a least-squares fit is to find the
coefficients for a given set of polynomials, which
minimizes S.

The coefficients are found by taking the derivative
of S with respect to each coefficient and setting the
result equal to zero. For example, _ing S for
G,gives

Iv N M

_Z, Fk(xny,) - _ _ G_(xny,)F,(z,y,). (10)
r,.1 r,.l j-I

The result of minimizing S for all mefficients can be
expressed by using summations in matrix form as

i ZrF,(x,,Yr)
r=l

N

_, z.yu{x, y,)
r=l

FN
L_, Fl(xr, y_)Fz(xr, Yr)... _ F_x,.,yr)F2(xr, yr)

r-1 r-1

ffi " .

N N

_, Yl(xr,y,_'u(x,_y,) . . . _, Yu(x, y,)Fu{x,Yr)
r-I rfl

I:]x . (11)
M

This expression can be greatly simplified with vector
notation:

Z'Fu.I LF_'F, .Fu!Fu] G'
(12)

where the dot product of the vectors F, and Fj gives
the sum of the products of both polynomials over
every data point:

N

r,. r, = _ Y,(x,y,_(x, y,). (z3)
r-1

And the dot product of the vectors Z and F# gives the
mum of the products evaluated at all data points:

matrix,

iFl l01" - i G, (IS)

[Z.ZuJ Fu.ru

and the coefficientscan be found by multiplyingboth
gidesof the equationby the inverseof the diagonal
matrix:

"Z'Fx'

IIFl II_

G _ i (16)

Z. Fu

.UF_II 2.

However, most orthogonal polynomials are only
orthogonal over a continuous range, not over discrete
points. Thus the solution process is not as easy as it
seems at first. To overcome this limitation, there
are three possible approaches. The first is to assume
that the polynomials are orthogonal. This may work
if there is enough _mpled data to approximate a
continuous range, but it can introduce error. The
aecond is to take the inverse of the nondiagonal
matrix, but this can be numerically difficult and
inaccurate. Third, the polynomials can be orthogo-
nalized. Typically, this is accomplished with a Gram-
Schmidt technique.

4. Grlm-Schmldt OrthogonaUz_lon

A. Grsrn-SchmicltOrthooor_ization Process

The Gram-Schmidt orthogonalizationprocesstakes
M arbitrary vectors in an M-dimensional space (M
space) and creates M orthogonal vectors that form a
basis for that space. A basis for an M space is
essentially a coordinate system for that space. Since
the basis vectors are linearly independent, all other
vectors in that space may be formed from linear
combinations of the basis vectors.

To illustrate the Gram--Schmidt process, we con-
sidertwo arbitraryvectorsFl and F2 (Fig.5),which
are tobe orthogonalizedtoproduce new orthogonal
vectors@l and 4)2(Fig.6). To beg'/n theorthogonal-
izationprocess,we definethe firstorthogvnalvector
@x tobe the firstarbitraryvectorFt. Now, withthe
firstvectororthogonalized,allother vectorscan be
orthogonalizedby projectingthe currentvectoronto
each precedingorthogonalizedvector(Fig.7). Each

W

z .r,= _ z,r_{x,y,).
r-1

(14)

D. _Nvtng forthe _c_ems A_uming Orl_ogonal
I_ynomial Vectors

If the F vectors are orthogonal over the sampled data
points, the minimization process produce8 a diagonal

ii

FiB. 5. Two arbitraryveeton in • two.dimerationalspace. The
_urstvectoril de_medt_ be the frr_ ortholromdv_'torof the space.
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Fig. 6. Two m_hogona] vectors in • two-dimensional _e. The
function of the Gram-Schmldt _rthogvnal_tion prooeu k to
crmte tlmm two vectors.

projection is subtracted from the current vector,
leaving the orthogonal component. This process is
continued for the rest of the vectors, each time
subtracting off the projections of the current vector
onto all previous vectors. This creates a set of M,
orthogonal vectors, which replaces the original set of
vectors.

In general, the Gram-Schmidt orthogonalization
process can be expressed for any vector Fj as

_ _ _o. (17)
'tJ = F_- .1, .,_°

By letting Dj,, represent the coefficient of O,,'

F,.,t,
Vj, = ¢, ._, (is)

the orthogonalization of any vector Fj can be ex-
pressed as

*, = Fj - Dj,*.. (19)
Is|

These orthogonalized vectors are now substituted
into the fitting process, replacing the original arbi-

- trary polynomial vectors.

B. Applying the Gram-SchmidtProcesstothe Vector
Formulation

From the fitting process, the polynomial vectors, Fx
through F_ [Eq. (7)], are orthogonalized and replaced
by thenew orthogonalvectors,4h through _M, result-
ing inthe calculationof a new and differentset of
weighting coefficients.These new coefficientsare

named r_forjin1-M. Thereforethe originalcoeffi-
cientvector G is replaced by the vector r. The

I

J_2e _1 _

Fig. 7. _dt orthopnalization proce_, which Imb-
the projectionof the second vectoronto the lmmeeding

wet_ tom'mte an oztho@onalwctor,
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original measured surfacefunctionvaluesare now
fittedinterms ofthe_newvectors:

Z - [@_,..., 4'ulr. (20)

The system is then solved, as shown above, by
multiplying both sides of the minimized least.squares
fit equation by the inverse of the resultant diagonal
matrix. The r coefficientsare now known and can

beused torepresenttheoriginalsurface:

!Z.@,
r

Ili@,II_

r _. iI • (21)
IZ "0,1

S. IRnding G InTerms cdr by Backsubstltution

The polynomials fitted to the measured values are
typically a standard set, such as the Zernike polynomi-
als. Therefore, since the polynomials do not change,
the coefficients found in the fitting process of the
origins.] polynomials can be used to describethe test
surface and serve as a basis of comparison between
other test surfaces. However, when the Fx through
FH vectors were orthogonalized, the polynomials FI
through FH were modified, creating a new set of
polynomials, @x through _, that are dependent on
the measured values. Thus the r coefficients that
compose r cannot serve as a basis of comparison,
since every set of r coefficients is related to a different
set of polynomials. Because of this, it is necessary to
find a means to convert r to G.
The firststepinfindingG intermsofF istoexpress

the orthogonalizationprocessby using matrixnota-
tion. From Eq. (19)the orthogonalizationof allM
vectorscan be shown asfollows:

[.l,]=[,T1
L_,=rj LFurj

0

D21

D_I

,.,

Ds_ 0

D_ .,.

.

0i-;1o., O ° •

" L'_,/J
Dau-1 0

(22)

CallingthematrixoftheD,.coefficients_ forsimplic-
ity,we can solveEq. (22)xorthe orthogonalvectors,
where.Y isan identitymatrixofsizeM x M:

IF_ r]

/ .
LFurJ

(23)



Recalling Eqs. (7) and (20), we can dearly see that two
equivalent representations of the surface exist, one
using the originalpolynomialvectorsand the other
usingtheorthogonalizedpolynomialvectors.There-
forethefollowingstatementcanbe made:

IF,,..., F._ = [4,, .... , @_]I'. (24)

Now, if'we rewrite Eq. (23) using transposes

.... = (.f + (25)

and the transpose of both sides of the resultant
equation is taken, an expression for the matrix of 4,,
through_P_intermsofF, throughF_ isproduced:

[O,,... ,_] = [F,,..., FMI(J + ._)-,]T. (26)

Sub tutmgEq.(26)intoZq.(24),

[F,,..., = IF,,..., FuI(J + (27)

and dividing both sides by the matrix of the polyno-
mial vectors provide the desired solution of G in
terms ofthe D_ coefficients and r:

c = [(J + (28)
6. C,4mduslon

Interferometry is an optical testing technique in
which information about a test surface is extracted
from an interferogram.Thisisaccomplishedwith a
three-stepprocess. First,thedataaresampled,usu-
allyby one of two main methods: digitizationor
phase-measuringinterferometry.Second,the sam-
pled data pointsare ordered. Third,the ordered
data are fit to a polynomial set. Typically, Zernike
polynomials are used because they form a basis set for
circulzr apertures. However, they are not a basis set
for noncircular apertures. In these cases, other
polynomial sets such as Zernike--Mahsjan (for annu-
lus apertures) and Legendre (for rectangular aper-
tures) may provide better results. In this paper we
developed a completely general linear-algebra vector-
notation model to describe the polynomial fitting
process independent of the polynomial set. The
basic process is to describe the sampled data as a
linear vector: Fit that data to an arbitrary polyno-
mial set by using a least-squares method. Orthogo-

nalize the polynomials to the data vector by using a
Gram-Schmidt technique. Solve for the original
polynomials weighting coefficients by using a backsub-
stitution technique.

From an implementation point of view, by treating
the polynomial set as a vector, it is possible to write a
algorithm that has no knowledge of the actual polyno-
mial set being fitted. Thus it is simple to change
between polynomial sets for various aperture shapes.
Also, it is not necessary to actually solve for the
orthogonal po]ynomiaJ coefficients to arrive at the
original polynomial weighting coefficients by using
the backsubstitute technique.

This project was supported in part by NASA re-
search grant NA63-1300 from NASA-Lewis Research
Center, Cleveland, Ohio, and was a result of H. Philip
Stah]'s participation in the American Society of Engi-
neering Educators/NASA Summer Faculty FeUow-
shipProgram. SpecialthanksisgiventoAlexPline
ofNASA-Lewis.
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ABSTRACT

One approach for obtaining a surface representation is to fit Zemike polynomials (in • least squares sense) to
discrete data points in the full aperture. The mathematics for this have been described using both matrix ! and vector
notation2. Additionally, vector notation has been used to describe how to obtain • surface representation from orthogonal (x,
y) slope data3. The result of that paper was • matrix operator for linearly combining the first eight Zernike polynomial
coefficients fit to x- and y-slope data to produce a Zemike polynomial surface representation. _ paper extends that
process by presenting a systematic approach for obtaining the linear relationship between slope and surface using the first49
Zemike polynomials.

1. INTRODUCTION

Full-aperture interferometry techniques are used to measure surface characteristics of • test object via non-
destructive optical methods. ] Traditionally. Zemike polynomials are fit (in • least squares sense) to the measured data to

produce • standardized representation of the surface. The parameters which describe the surface's characteristics are, the
weighting coefficient of the Zemike polynomials. This fitting process has been explained in detail using both mauix and
vector analysis 12.

While surface intefferometry is he simple to analyze, it is not always used; in some cases it is better to measure
slope, such as the Ronchl test does. Because, these techniques yield slope data in • particular direction, to create a surface
representation, it is necessary to measure slope in two orthogonal directions: in the x- and y-directions. The data is not fit to
the derivatives of the Zemike polynomials because the derivatives are not orthogonal. Rather, to reconstruct the surface,

these orthogonal slope data sets are fit to Zemike polynomials to create • representation of the test object's slope, and
combined according to a linear operator.3 This paper describes the process of creating • polynomial surface representation
using the first 49 Zernike polynomials based on a least squares fit of Zemike polynomials to orthogonal slope data.

2. FITTING ZERNIKE POLYNOMIALS TO THEIR DERIVATIVES

The first step in creating a Zernike polynomial, surface representation based on fits of orthogonal slope data is to
determine which linear combinations of Zemike polynomials will recreate the x- and y-derivatives of the Zernike
polynomials. To do this, it is first necessary to examine the Zernike polynomials.

2,.1 Description of Zernlke polynomials in R terms

The Zemike polynomials are a basis set, orthogonal over • unit circle. There is an infinite number of these

polynomials, since they are constructed from a generation formula, but in many applications only the first 36 or 49
polynomials are used. They are commonly used for fitting data from interferometric applications because they represent the
Seidel aberrations well. 4 In this paper, two different notations will be used to represent the Zernike polynomials. They are
the Z, notation and the Rr_" notation In the case of the Z, notation, the subscript, n, indicates which polynomial is
being represented. The subscript is • positive, integer value staring at zero. Thus, Zio refers to the eleventh Zernike
polynomial. For the Rrm notation, r is the radial magnitude of the polynomial and m is the radial fzequency. 1"hesign ofm
also designates whether the trigonometric term involved in the Zemike polynomial is a sine or a cosine: m 2>Odesignates a
cosine and m < 0 designates a sine. Finally, r > 0 always, and r > Imlalways. Toese cases are summarized below:

._P_. uo/, oloo3 / _?.3.
/



Z= = a Zernike polynomial

n indicates polynomial referred to.

R_ = a Zemike polynomial

r = radial magnitude

(me),=<Oolvbe i. (me),m

Figure I. Notation ofZernike pol]_nomia]s

In the remainder of this paper, the Zernikes will be considered using rectangular comdinates (x and y), not polar (r and 0).

Examples of this notation follow:

R] 2 = ZI2 = (4r 2 - 3) r2sin (20) = 8x3y + 8xy 3- 6xy

R] = Z9 = r3cos (30) = x3-3xy 2

Figure 2. Illustration of notation of Zernike polynomials

2.2 Selection of terms to fit

The next step is to create the x- and y-derivatives from the Zemike polynomials. The data is not directly fit to the
derivatives of the Zernike polynomials because the derivatives are not orthogonal. For each of the first 49 Zemike
polynomials, use linear combinations of Zernike polynomials. Instead of trying a combination of all 49 polynomials to
determine which polynomials construct a given derivative, the R_ notation clearly indicates which polynomials to include
in the finear combination.

The first step is to determine the highest order term in the summation. This is found according to the following
rules given in Figure 3, below:

art=To find _ use unless m+l • r-l, then use Rr=_-iI

aRt= R;(_.l) R;_(7 -')
To find _-_ use _ unless m+l • r-l, then use

(a) m>0

aRrm
To find _-_ use Rrm_+li unless Im-ll • r-l, then use Rr=_*l!

¢)Rr= o -(=.1) unless Im-ll > r-l, then use R;'(_ *!)
To find _-_ use "r- l

Co) m<O

Figure 3. The four cases for determining the highest order term of a finear summation
which produces the derivative of the Zernlke polynomial specified by the initial R term.



Therestofthetermsusedinthelinearsummationarefoundfromthehighest order term. This is shown below, with

an example following.

aR,= 1,o I,= .... .... Roo
To find _ for m > 0,even, use R= - 2, R_ - 4...... ,, "_- 2, -'_- 2,

c)Rrm for m > 0, odd, use
Tofind _-_

_Rrm

To find _-_ for m < 0,even, use Rm+2 i_m+4 R 2 Dm Din-2 R-2r ,"r , "", r, "r-2' %r-2 . "", r-2, "".Ro 2

o_Rr m

Tofind _-_ for m < 0, odd, use ÷' ..... R; ..... ..... R; t

Figure 4. Selection of all terms used in a linear summation to produce a given derivative. The initial R
value is the one chosen according to Figure 3. It should be recalled that m _ ralways, so R terms involving

a superscript value greater than its subscript will not exist, and are not used in the linear summation.

To find the x-derivative: To find the y-derivative:

(a) Zls = R_ Z13 = R_

¢C) R 2, R 0, 172 1_° I_0 R42, R22""2' "2' "0

(d) Zip Zs, Z4, Z 3, Zo Zl2, Zs

(¢) _ -- bllZll+bsZ8+b4Z4+b3Z3+boXo _'_ -- cI2ZI2+CsZ5

Figure 5. An example of selecting the terms of the linear summation. (a) The Zemike
polynomial being considered. (b) F_ding the highest order term of the summation for
the x- and y-derivatives. (c) All terms involved in the linear summation for the creation
of the x- and y-derivatives. (d) The terms expressed in Zo notation. (e) The linear
summation used to create the derivatives; bI l, bs, b4, b0 _ ¢12 and cS are constal3ts.

This process can be repeated for the x- and y-derivatives of the first 49 Zemike polynomials.

2.3 The fitting process

With the polynomials necessary to create each derivative now chosen, it is possible to find the amount of each
polynomial needed. Each polynomial in the linear summation is multiplied by an arbitrary constant, as illustrated in Figure
5. To give the exact representation oftbe derivative in terms of Zemike polynomials, numerical values for these constants
were found using a computer algebra application, MAPLE V, on a NeXT computer running NeXTSTEP v3.0. Two
approaches to the fitting were used: for simpler summations a simple MAPLE procedure worked well, but for certain higher
order terms more effort is involved.

The simple MAPLE procedure begins with a linear sum of the Zernike polynomials that will create the derivative.
Each Zernike in the sum is multiplied by a constant. Then, all coet_cients are matched between the linear sum and the
derivative. (Coeeficient matching is the process of finding the coefficients of a given power ofx or y on both sides of an



equation and setting these terms to be equal.) The set of equations generated by coefficient matching are solved for the
constants of the summing polynomials. The MAPLE V codes for doing this for the x- and y-derivatives of the 13th Zemike
are shownbelow.

_mdasum :- b0*z0 + bl*z3 + b2*z4 + b3*z8 . b4*z11: _.. The ih_ar sum of

sum := expand(sum) : ZeH1ikepoly_3_l_als

d:=13: --_ Consider the 13th Zernike
linequset:-{}: coeffset :ffi {}:

for k from 0 to 4 do Match the
#create equation matching x-coeffs of x-derivative to x-coeffs of sum

linequx.k := coeff(zx.d, x, k) -coeff(sum, x, k); _ coeffideatsto

#create equation matching y-coeffs of x-derivative to y-coeffs of sum powersofx

linequy.k := coeff(zx.d, y, k) - coeff(sum, y, k);

#add the equations to the set of equations __ ]vJalchthe

linequset :--linequset union {linequx.k, linequy.k}_coefficieatsto

#add the coeff to the set of coeffs powers of x

coeffset := coeffset union {b.k}; So]vedgeqtlations

od: for the weighting
# solve for the coeffs __ coefficients.

solns : --solve ( linequset, coeffset )

solns := {b4 = 5., b3 = 5., b2 = 3., bl = 3., b0 = i.} --._"

The values of the

, weighting

coefficients

Figure 6. The MAPLE procedure used to find the weighting coefficients of the linear sum to create the x-
derivative of the 13th Zernike polynomial. The coefficients b4 .. b0 correlate to bit, bs, b,t and bO.respectively

sum := c0*z5 + c1"z12: _-. Tbelh_sumof

sum := expand (sum) : Z_ po]yoomials

d:=13: _ Consider the ]3th Zernike

linequset:={}: coeffset := (}:

for k from 0 to 3 do _hthe
#create equation matching x-coeffs of x-derivative to x-coeffs of sum

_., coefficients to
linequx.k := coeff(zy.d, x, k) -coeff(sum, x, k); _,.

#create equation matching y-coeffs of x-derivative to y-coeffs of sum powers ofx

linequy.k := coeff(zy.d, y, k) = coeff(sum, y, k);

#add the equations to the set of equations __ Match the
linequset := linequset union {linequx.k, linequy.k); _CO¢fficients[o

#add the coeff to the set of coeffs powers ofx

coeffset := coeffset union {c.k) ; Solve the equations
od: for the weighting
# solve for the coeffs _coefficients.

solns:=solve(linequset, coeffset);-4-""

solns ..= {el = 5., cO = 3.} _-,_"

The values of the

weighting
coefficients

Figure 7. The MAPLE procedure used to find the weighting coefficients of the linear sum to create the y-
derivative of the 13th Zemike polynomial. The coefficients cl and cOcorrelate to c12 and c5, respectively.

Unfortunately, for some cases, this process does not work. The above procedure does no_produce integer values for
the coefficients. When this happens, it is necessary to use more finesse.

The procedure starts by first identifying the highest order terms in the derivative. The coefficients of these terms are
matched to the equivalent terms of the highest order summing polynomials, and the weighting coefficients are solved for.
The highest order polynomials are multiplied by the weighting coefficients, and subtracted from the derivative. The process
is continued by matching the highest order terms of the remainder to the highest ov:ler terms of the remaining summing
polynomials and solving for the corresponding coefficients. By iterating this process, all weighting coefficients will be



found. This is illustrated for the x-derivative of the 41st Zemike:

> zx41 ;

6 4 3 5 2 7 4 5

784.0 y x + 560.0 x y - 336.0 y x - 112.0 y - 840.0 y x + 168.0 y

2 3

÷ 180.0 y x - 60.0 y

> expand(z39) ;

6 4 3 5 2 7 4 3 2 5

35.0 y x - 35.0 x y - 63.0 y x + 7.0 y - 30.0 y x ÷ 60.0 y x - 6.0 y

> expand(z30) ;

6 4 3 5 2 7 4 3 2

63.0 y x ÷ 105.0 x y + 21.0 y x - 21.0 y - 90.0 y x - 60.0 y x

5 2 3

÷ 30.0 y + 30.0 y x - I0.0 y

• expand(z23) ;

6 4 3 5 2 7 4 3 2

35.0 y x + 105.0 x y + 105.0 y x + 35.0 y - 60.0 y x - 120.0 y x

5 2 3

- 60.0 y + 30.0 y x + 30.0 y - 4.0 y

> expand(z26) ;

• expand(z19);

4 3 2 5

5yx - lOy x +y

4 3 2 5 2 3

15.0 y x + 10.0 y x - 5.0 y - 12.0 y x ÷ 4.0 y

• expand(zl4);

4 3 2 5 2 3

10.0 y x + 20.0 y x ÷ 10.0 y - 12.0 y x - 12.0 y ÷ 3.0 y

• expand(zlO);

> expand(zlO);

• expand(z7);

2 3

3yx -y

2 3

3yx -y



2 3
3.0 y x + 3.0 y - 2.0 y

> expand(z2) ;

Y

expand(z2);

It _ seen thatthe _ghem order .nns in the derivative of Z4l me of msgnitude seve_: yx 6, x4y 3, ySx2, ),7 md the_

sue also three summing polynomifls wi_ mtms of order _ven: Z39, Z_ Z23. Thus, the first three weighting coc_cienm are

found by u_ng the coe_ckn_ of the yx 6, x4y 3, and ySx2 _m_:

• 8olvs((35*b8+63*bT÷35*b6 = 784, -35*bS+lOS*b7+lOS*b6 = 560, -$3*bg÷21*b7÷lOS*b6--

336},

(b8, bT, b6))i

(b7 - 8, b6 - O, I)8 - 8)

• assLGm(°)a

• stuff :- @xpand(zx41 - (b8*s39 + b7*s30 + b6*s23))i

4 5 2 3

stuff :- 120.0 y x - 24.0 y - 4;0.0 y • + 20.0 y

With the first three weighting coefficients found, the process is continued for the yx 4, y3x2, _d y5 terms.

• so1Te({5*b5+15*b4+lO*b3 - 120,

b4, b3))s

-10*bS+lO*b4+20*b3 - O, 1*bS-S*b4+lO*b3--24), (b5,

{b3 - O, I>4 - 6, b5 - 6}

• assLgn(');

• stuff2:0 expand(stuff - (b5*z26 + b4*s19 + b3*sl4))l

2 3

stuff2 :- 12.0 y • - 4.0 y

"I_ l_t of _c weighting coe_cico_ are _und by considering the yx 2, and x3 terms.

• solve({3.b2+3*bl=12, -leb2+3*bZ--4), {bl, b2))t

{bl - O, b2 = 4}

• asstgn(')s

• Stuff3 :- ex_and(stuff2 - (b3tglO+blts7));

st:uff3 s- 0

The final coefficient, sO,must be equal to _m.

Using the described methods, the constants are found for all polynomials in all linear combinations for the x- and

y-derivatives of the first 49 Zernike polynomials.

3. INITIAL APPROXIMATION OF THE SURFACE FROM THE DERIVATIVE FIT

When the orthogonal, slope data is (least squares) fit to Zernike polynomials, 7_.¢3... Z_, • set of weighting

coefficients for the x-slope and the y-slope are produced. These weighting coefficients will be vJmed: Be ... B_ for the x-

slope, and Co... C48 for the y-slope. The weighting coefficients are now used to getgrate a surface representation composed

of Zemike polynomials.



To find the weighting coefficient for a given Zernike polynomial, first find the largesl constant(s) used to remeate its
x- and y-derivatives. The coefficients from the least squares fit con'esponding to the largest gumming constants should then
be added together, and divided by the sum of the largest constants. This gives an approximation to the weighting coefficient
of the Zemike polynomial to represent the surface.

The 13th Zemike polynomial, Z]3, is considered for an example. The largest constants of the x-summation are bs
and b11,with a value of 5. (See Figure 6) The polynomials corresponding to these constants are Zll and Zs. Likewise, for the
y-derivative, that the hugest constant is c]2, also with a value of 5, conespouding to Z]2. To reconsm_ add the x..slope
weighting coefficients (B]I and Bs) and the y-slope weighting coefficient (Cl2). 'I_ m_n should then be divided by
,3+a,t+a2 = 15 to normalize. Thus, the initial approximation of the weighting coefficient of Z13 based on the slope data is

AI3 = [BII+ B$ +C12]/15.

4. IMPROVED APPROXIMATION OF THE SURFACE FROM THE DERIVATIVE FIT

The approximation of the _ polynomial representation of the surface found above is improved by mbtracting
off higher order _ because the higher order terms include lower order terms. The higher order terms which should be

removedarethoseofthesameradialfrequenC_mOf,butwithgreaterradialmagnitudethan,theZernikepolynomialbeing
considered. These terms are found from the R r notation, as shown below:

(a) For a given Zernike polynomial R_, remove the coefficients of: Rrm+2, Rrm 4, Rm÷4""

Co) For the Zernike polynomial R_ , remove the coemcients of: R_,R_,R],

FortheZernikepolynomialZz3, removethecoefficients: Az2, A33, A46

Figure 8. (a) Determining higher order terms to subtract from surface approximation.
(b) An illustration of this procedure using ZI3.

The resulting weighting coefficients are thus:



A0 = 0

A1 - [B0] - A6 - A13 - A22 - A46

A2 = [CO] - A7 - AI4 - A23 - A3d - A47

A3 - [BI + B2]/8 - A8 - AId - A23 - A3d

A4 - [B1 - C1]/d - All - A20 - A31 - A44

A5 - [B2 ÷ C1]/d - A12 - A32 - A45

A6 = [B4 ÷ B3 + C5]/9 - A14 - A23 - A33 - A46

A7 - [B5 - C4 + C3]/9 - A14 - A23 - A34 - A47

A8 - [B6 + C7]/16 - A15 - A24 - A35 - A48

A9 - [Bd - C5]/16 - A18 - A29 - Ad2

A10 - [B5 + C4]/16 - A19 - A30 - Ad3

All = [B9 + B6 - C7 + C10]/16 - A20 - A31 - A44

A12 - [B10 + B7 + C6 - C9]/16 - A21 - A32 - Ad5

A13 = [Bll + B8 + C12]/15 - A22 - A33 - A46

A14 - [B12 - Cll + C8]/15 - A23 - A34 - A47

A15 - [B13 + C14]/24 - A24 - A35 - A48

A16 - [B9 - CI0]/8 - A27 - A40

A17 - [B10 - C9]/8 - A28 - A41

A18 = [B16 ÷ Bll - C12 + C17]/20 - A29 - A42

A19 = [B12 + B17 - C16 + Cll]/20 - A30 - A43

A20 = [B18 +B13 - C14 +C19]/24 - A31 - A44

A21 - [B19 + B14 - C18 + C13]/2d - A32 - Add

A22 = [B20 ÷ B15 + C21]/21 - A3d - A46

A23 = [B21 + C15 - C20]/21 - A35 - Ad7

A24 = [B22 + C23]/32 - A35 - A48

A25 = [B16 - C17]/10 - A38

A26 = [B17 - C16]/10 - A39

A27 = [B25 + B18 - C19 + C26]/24 - A40

A28 = [B19 + B26 - C25 + C18]/24 - A41

A29 = [B27 + B20 + C28 - C21]/28 - A42

A30 - [B28 + B21 - C27 + C20]/28 - A43

A31 = [B29 + B22 - C23 + C30]/32 - A44

A32 = [B30 + B23 - C29 + C22]/32 - Ad5

A33 = [B24 + B31 + C32]/27 - A46

A34 - [B32 + C24 - C31]/27 - A47

A35 - [B33 + C34]/40

A36 - [B25 - C26]/12

A37 = [B26 ÷ C25]/12

A38 = [B36 + B25 + B37 - C28]P28

A39 = [B37 + B27 ÷ C27 - C36] r28

A40 = [B38 + B29 + C39 - C30]P32

A41 = [B39 + B30 - C38 + C29] r32

A42 = [B40 ÷ B31 + C41 - C32]t36

Ad3 = [Bdl ÷ B32 - C40 + C31]t36

A44 - [B42 + B33 + C43 - C3d] P40

Ad5 - [B43 + B34 - C42 + C33] r40

Ad6 = [B44 + B35 - C45]/33

Ad7 = [B45 - C44 + C35]/33

Ad8 - [B46 + Cd7]/48

Figure 9.Weighting coe_c_n_ W first 48 Zernike polynomi_s W re,co_ct a

surface based on slope measurement. Bn and Cn are the weighting coe_c_n_

found by fi_ng x- and y-derivatives of Zernikes w x- and y-_ope, respec_vel_



xl leo] -x6-x13-_2-_- A_I -AV_

A2 [CO] - A7 - AId - A23 - A34 - A47 ..y_
A3 [BI + B2]/8 - A8 - Aid _s_-A2_- A3£5

Ai = [BI - C1]/i - A11 - *.20 - A31 - A44 _"

A5 = [B2 ÷ CI]/4 - AI2 - A32 - A45 -- _I

A6 - [B4 + B3 + C5]/9 - AI_I- A21_.- A33 - A46 -------

A7 ,, [B5 - C4 ÷ C3]/9 - AI4 - A23 - A34 - A47

A8 ,, [B6 ÷ C7]/16 - A15 - A2d - A35 - A48

A9 ,, [B4 - C5]/16 - AI8 - A29 - A42

At0 .- [B5 + C4]/16 - AI9 - A30 - A43

A11 ,, [B9 , B6_C7 ÷ CI0]/16 - A20 - A31 - A44

AI2 = [B10 ÷ B7 ÷ C6 - C9]/16 - A21 - A32 - A45

A13 ,, [Bli + B8 + C12]/15 - A22 - A33 - A46

A14 = [B12 - C11 ÷ C8]/15 - A23 - A34 - A47

A15 = [B13 ÷ C14]/24 - A24 - A35 - A48

A16 = [B9 - CI0]/8 - A27 - A40

AI7 ,, [B10_C9]/8 - A28 - A41 _ + _r --

A18 ,, [B16 , Bll - C12 + C17]/20 - A29 - A42

A19 ,, [B12 ÷ B17 - C16 ÷ Cll]/20 - A30 - A43

A20 ,, [BI8 +BI3 - C14 ÷C19]/24 - A31 - A44

x21 . cB19÷ B14 - c18 • c131/24 - ,a_--
A22 ,, [B20 , B15 ÷ C21]/21 - A34 - A46

A23 ,, [B21 ÷ C15 - C20]/21 - A35 - A47

A24 ,, [B22 + C23]/32 - A35 - A48

A25 = [B16 - C17]/10 - A38

A26 ,_ [B17_C16]/I0 - A39 _ -k e_ --

A27 = [B25 • B18 - C19 + C26]/24 - A40

A28 ,, [B19 • B26 - C25 + C18]/2d - A41

A29 ,, [B27 ÷ B20 + C28 - C21]/28 - A42

A30 ,, [B28 ._ B21 - C27 + C20]/28 - A43

A31 ,, [B29 + B22 - C23 ÷ C30]/32 - A44

A32 ,, [B30 ÷ B23 - C29 + C22}/32 - Ad5

A33 ,, [B24 • B31 ÷ C32]/27 - A46

A34 ,_ [B32 + C24 - C31]/27 - A47
_s = [e33 ÷ c34]/40 --- ,_q8

A36 ,, [B25 - C26]/12

A37 ,, [B26 ÷ C25]/12

A38 ,, [B36 ÷ B25 + _37 - C28]/28 _ C..5_

A39 ,, [B37 ÷ B27 ÷ C27 - C36]/28

A40 ,B [B38 ÷ B29 + C39 - C30]/32

A41 ,, [B39 ÷ B30 - C38 ÷ C29]/32

A42 ,, [B40 ÷ B31 * C41 - C32]/36

A43 ,, [B41 ÷ B32 - C40 + C31]/36

A44 ,, [B42 * B33 + C43 - C34]/40

A45 - [B43 + B34 - C42 + C33]/40

A46 ,, [B44 + B35 - C45]/33

A47 ,, [B45 - C44 • C35]/33

A48 = [B46 + C47]148

F_'e 9,_ c_i'Rciea_to£m. _ _ polynomialsm mcommJc_ •

foend by fitting x- and y-d=ivative_ of _ to x- and y.41ope, n_"fively.

_.__ -A_-'_-A 3 _

-jk c_ ,-,



$.CONCLUSION

'I'ne means to obtain a r,arfaee representation of by fitting Zemike polynomials (in a least squares sense) to discrete

data points in the full aperture has been described in the past via matrix and vector notation. Additionally, vector notation
has been used to describe how to obtain a surface representation from orthogonal (x, y) slope data 3. The result of that paper

was a matrix operator for Unearly combining the first eight Zemike polynomial coefficients fit to x- and y-tiope data to

produce a Zemike polynomial surface representation. This paper e_tendvd tl_ process by pregcvting • sy_ematic approach
for obtaining the linear relationship between slope and surface udng the first 49 Zernike polynomials.
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ABSTRACT

Ronchi interferometry is an optical testing technique similar to shearing interferometry. A coherent wavefront is

interfered with a sheared form of itself by placing a periodic grating at, or near, the focus of an optical system. The resultant

interference pattern contains information about the wavefront's slope in a direction perpendicular to the grating structure. The

wavefront can be reconstructed from two orthogonal slope data sets via the process of sampling, ordering and fitting. This

paper develops a linear-algebra vector notation model of the interferogram sampling and fitting process.

1. INTRODUCTION

Whenever two coherent wavefronts exist at the same point in space, they superimpose, to create an interference

pattern. The irradiance at any point, E(x,y), as determined by the Optical Path Difference (OPD) between the two wavefronts is

described by:

E(x,y) = E0[l+cos(-_OPD)] (I)

where

= measurement wavelength (2)

The two dimensional irradiance pattern crealed by the optical path difference at all points is called an irradiance pattern.

For a sheared interferogram, the OPD is given by the difference between the wavefront and its sheared self. This difference is
called the differential wavefrom.

OPD = W(x,y)-W(x+Ax, y) = AW(x,y) (3)

By rewriting the differential wavefront ,as:

5W (x,y)
Ax = a(x,y) Ax (4)

8x
AW (x, y) =

the wavefront slope can then be written as:

ct (x, y) -

Therefore, the irradiance pattern can be expressed as:

E (x,y)

where:

5W(x,y) AW (x,y)

5x Ax

= Eofl+ cos (_-_qa)]

(5)

(6)

_. = _ = equivalent wavelength (7)
eq Ax

The Ronchi test is similar to shearing interferometry, only the shear is caused by a periodic grating placed at, or near,

the focus of the optical system under test. Like shearing interferometry, the resultant irradiance pattern (Ronchigram) contains

slope information in a direction perpendicular to the shear direction - the direction of the _ating structure. From this

similarity, it can be shown that the Ronchigram can be expressed by:

EE(x,y) = Eo 1 +cos(x-_a) (8)

zp.z__ tJcL t75s/ 199a,



where:

= wavefront slope (9)

d
_'cq - 2F/# (10)

d = Grating Spacing (11)

Ft# --Test Beam F/# (12)

Thus, by proper scaling of the interferogram, conventional interferogram analysis techniques will provide a direct

measurement of the wavefront slope. The challenge is to extract a representation of the test surface from such an

interferogram This will be done using a linear-algebra vector notation model of the interferogram sampling and fitting process

2. INTERFEROGRAM ANALYSIS

Conventional wavefront interferogram analysis is accomplished via a three step process: data sampling, ordering, and

titling. The result of this process is a representation of the wavefront under test. For a shear interferogram, such as a
Ronchigram, the analysis provides a representation of the wavefront's slope in a particular direction (such as the x- or y-

direction). To obtain a representation of the actual wavefront from a Ronchigram, it is necessary to combine two orthogonal

slope representations.

2.1 Sampling

Because an inlerferogram has nearly infinite resolution, the actual number of points that can be measured is limited

only by the sampling technique. There are two main methods for acquiring the data: digitization, and phase-measuring

interferometry. In digitization, data points are acquired by sampling along the center of either the light or dark fringes. Usually,

the interferogram is photographed and the image is placed onto a digitizing tablet where the data points are digitized by a

human operator. Alternatively, the image can be acquired with a video camera and digitized using image-processing

techniques. Phase-meastlring inlerferometry, by contrast, is an electronic process where a video camera samples the wavefront

phase at every point within its detector array - thus creating a high density, uniform grid of data. An illustration to show the

difference in the two techniques is shown in Figure I and Figure 2:

Fig. 1. An illustration of the placement of data points
when an interferogram is sampled by digitization

Fig. 2. An illustration of the placement of data points when an
interferogram is sampled by Phase-Measuring lnterferometry



Forthispaper,it isassumedthatthedatais sampled by manual digitization along the dark fringes. The data is

recorded in the form (m,x,y) where (x.y) gives the position of the point and (m) is the order of the sampled fringe - which, as

will be discussed in the next para_aph, is related to the height of the surface in units of 2_.

2.2 Ordering

Once the data has been sampled, it must be ordered. Because the irradianee pattern is proportional to cos(k*OPD) the

data is in units of modulo 2_ or modulo _..Thus, even though a point in the interferograrn represents a quantity greater than 2_,

no measured quantity will be larger than 2_. For instance, an (x,y) point may have an (m) that is of magnitude 9a. The

measured (m) will equal n, which is found by taking the magnitude modulo 2_. Therefore, the magnitude oftbe data must be

artificially reconstructed by ordering the data. This is done by assigning integer order number values to each series of
measured data points. For example, all data points along a given fringe will have the same order and each adjacent fringe has

an incrementally larger order number.

For manually digitized data, this ordering is accomplished by the trained operator. For video digitization, this is

accomplished by image processing techniques. And for phase-measuring, this ordering is accomplished by a process called

phase unwrapping.

2.3 Fitting

Once the data has been sampled and ordered, it must be fitted to a polynomial set to represent the shape of the test
surface, generally, this is accomplished using a least squares method with a Gram-Schmidt orthogonalization. From this fit

several questions can be answered: how flat is the surface, are the features concave or convex, and what aberrations are present.

Traditionally, Zemike polynomials have been used for this representation for several reasons. They look like classical

Seidel Aberrations. They provide a good fit to the circular aperture interferogram of most optical components. And, because

they are orlhogonal, they are easy to manipulate. It is possible to add or subtract coefficients without seriously affecting the

quality of the fit.

3. VECTOR FORMULATION

3.1 Purpose of the vector formulation

The purpose of this section is to summarize simply and clearly the analysis process of a Ronchigram using

general linear-algebra vector notation, and to develop a generalized mathematical model with which to explore the effects of:

sampling parameters, fitting polynomials, and the surface-fitting algorithm on the accuracy of the reconstruction of the lest

surface. The remainder of this paper presenls a general vector based formulation for the surface-fitting process.

3.2 Representing the measured values

The wavefront function at any point in the exit pupil, W(x,y), can be represented by a linear combination of M

polynomials, Fj(x,y), and their weighting coefficients, Gj, forj in ! to M.
M

W(x,y) = 2GjFj(x,y) (13)

j'l

Similarly, the waveffont slope at any point in the exit pupil, _(x,y), can be represented by:
M

I_ ix, y) = 2GjV Fj (x,y) (14)

j-!

Unfortunately, the Ronchi test does not make general slope measurements, it makes independent measurements of x-slope and

y-slope which can be represented as:



where:

M

a,_ (x, y) = E GxJ (Fxj (x, y) ) (15)

j=l

M

_y (x, y) = EGyj (Fyj (x, y) ) (16)

j=l

8FjCx, y)
Fxj (x, y) - 8x (17)

5Fj (x,y)

Fyj (x, y) = 5y (18)

It is therefore necessary to perform two separate fiiting operations to determine Gxj and Gyj.

A sampled and ordered x-slope interferogram data set be thought of as a series of N measured data points, where N >

M. At any point in the interferogram, (x r, Yr), there is a measured value, CZxr,where r is in 1 to N, the number of sampled points.
The r a_measured x-slope value is then written as:

M

o_r(x,,Yr) = EGxj(Fxj(x,Y)) whereN>M (19)

j=l

Alternatively, the single measured value, axr can also be expressed as a matrix of polynomials multiplied by a matrix of
coefficients.

[_x_ = [Fxl (xr, yr)... FxM(Xr, yr)] IGI_I1 (20)

LGx_

Thus, the entire series of N, measured x-slope values can be represented as a matrix of polynomials multiplied by the

coefficients matrix. (See Equation 21 )

= I I (21)

LaxsJ xl (xrq, YN) FxM (xN, Yr_)J x

In order to simplify this notation, the measured values can be considered to be a vector with N rows. Likewise, the
coefficients can be viewed as a vector with M rows, and a given polynomial evaluated at all N data points is a vector with N

rows.

_ = G x = F',,j = (22)

L_.J LG_j LFxj (xr_, Yrq)_]

Using this notation, the fitted values can be represented by:

xl "'" _t

3.3 Finding the best fit

The polynomials can be fit using a least squares method, where S is defined as the sum of the square of the difference

between the data points and the fitted polynomials. If a perfect fit were possible, then S would be equal to zero, because there

would be no difference between the measured values and the representing polynomials evaluated at the corresponding points.



However,therearealwaysdifferencesbetweentherealsurfaceanditsrepresentation.Therefore,Swillbenon-zero.The
function of a least squares fit is to find the coefficients, for a given set of polynomials, which minimizes S. This process can be

described using vector notation (See Equation 24), or as more commonly expressed using summations. (See Equation 25)

- ... (24)

S -- E axr- Gx.iFxJ (xr' y') (25)

r-I l-I

The coefficients are found by taking the derivative of S with respect to each coefficient and setting the result equal to

zero. For example, minimizing S for Gxk gives:
N N M

E a:"F'k(xv y') = E E G"jFx.i(x,.,y,)F,k(x,,y,) (26)

r-I r-lj-I

The result of minimizing S for all coefficients can be expressed using summations in matrix form as:

N

Et:Xx F,, (x,,y,)
r=|

I

N

E tlxrFxt, t (×r' Yr)
=1

NFx,(xr, y,)Fx,(x,,yr) ... EFxM(xr, y,)Fxr(x,,y_)

r=] r=l

I I

N N

E Fx] (x_, Yr) FxM (Xr' Yr) "'" E FxM (xr' y') FxM (xr' Yr)

r=l r-i

!

{ (27)

"['his expression can be greatly simplified with vector notation (See Equation 28), where the dot product of the vectors Fx_ and

F_,j gives the sum of the products of both polynomials over every data point. (See Equation 29)

a x F_, = _l _, ... x, x_, _,, (28)

• F_ LF_M• F,] ... F,M " F_MJ

N

Fxi " Fxj = EFxi (xt, Yr) Fxj (Xr, Yr) (29)

r_] -

Likewise the dot product of the vectors _x and Fxj gives the sum of the products evaluated at all data points.

N

"v:,J= ,T_.,%F,j(x,.y,) (30)
r--I

3.4 Solving for the coefficients assuming orthogonal polynomial vectors

If the F vectors are orthogonal over the sampled data points, then the minimization process produces a diagonal

matrix (See Equation 31), and the coefficients can be found by multiplying both sides of theeequation by the inverse of the

diagonal matrix. (See Equation 32) The process is repealed using the y-slope data to find Gy

L F, 0 ...

(31)



II

LIt , ll:j

(32)

However, most onhogonal polynomials are only onhogonal over a continuous range, not over discrete points. To

overcome this limitation, the Gram-Schmidt onhogonalization technique will be used to create two new polynomial sets which
is onhogonal over the x-slope data, and over the y-slope data.

4. GRAM-SCHM1DT ORTHOGONALIZATION

4.1 Summary of the Gram-Schmidt Orthogonalization process

The Gram-Schmidt orthogonalization process lakes M arbitrary vectors in an M dimensional space and creates M

orthogopal vectors that form a basis for that space. The Gram-Schmidt Orthogonalization process can be expressed for any
vector, Fxj, as:

_,J = F,J .... _,, (33)
= I_Jt $

By letting Djs, represent the coefficient of_x_ (See Equation 34), then the orthogonalization of any vector, F:xj, can
be expressed as shown in Equation 35.

D_js - _ (34)

j-I

(35)

4.2 Applying lhe Gram-Schmldt process to the vector formulation

For the fitting process, _e polynom_l vectors, Fx I through F:xM (See F__x]ualion22), are orthogonalized and replaced

by the new orthogonal vectors, @x_ through @xM. Because the original fitting polynomials are replaced by orlhogonalized

polynomials, a different set _f coefficients is found. Thesenew coefficients are named Fj, forj in I to M. Therefore, the
original coefficients vector, Gx, is replaced by the vector Fx. The measured values can now be fitted in terms of the new
vectors.

_x= [_,l-.. _,M? _'' (36)

The system is then solved, as shown previously (See Equations 31 and 32), by multiplying both sides of the minimized least

squares fit equation by the inverse of the resultant diagonal matrix. The F x coefficients are now known and can be used to

represent the original surface. (See Equation 37) The process is repeated using the y-slope data to find Fy.



I1 ,,112
I

a,'6,M

(37)

5.FINDING _, IN TERMS OF _'x

The polynomials fitted to the measured values are typically a standard set, such as the Zemike polynomials.

Therefore, since the polynomials do not change, the coefficients found in the fitting process of the original polynomials (See

Equation 3.2.) can be used to describe the test surface and serve as a basis of comparison between other test surfaces. However,
when the F_t through F_M were orthogonalized, the polynomials Fxl through FxM were modified, creating a new set £.f

polynomials, Oxt through OxM, that are dependent upon the measured values. Thus, the F x coefficients that compose I",,

cannot serve as a basis of comparison, since evgry set..pf F x co&fficien.[s is related to a different set of polynomials. Because of
this, it is necessary to find a means to convert I'_ to G_,, and Vy to Gy.

The first step in finding G, in terms of I'x is to express the orthogonalization process using matrix notation. From

Equation 35, the orthogonalization of all M vectors can be shown as follows.

F<,) - --
I rxl

I = : I -
i

t I '

---,T
0 ... () O.l

D:. l 0 ... 0

Dx31 Dx3_ 0 ... 0

I I I
..aT

D,M _ D,M,- ...D,MM_ s 0 _¢Dl_

(38)

The malrix of Dxj_ coefficients is called
found, where 1 is an identity matrix of size M x M.

'r "

I ()xl

I

,T

D x for simplicity. Solving Equation 38 for the onhogonal vectors, Equation 39 is

= (!+D_)-l _l

L, tJ
(39)

Recalling Equation 23 and Equation 36, it is seen that two equivalent representations of the surface exist; one using the

original polynomial vectors, and the other using the orthogonalized polynomial vectors. Therefore, this statement can be
made:

... -- ... ,,o)
Equation 40 is then rewritten using transposes (See ERuation 41), a_d the transpose .of both sides.of the resultant equation is
taken. This produces an expression for the matrix of Oxl through _DjtMin terms of F_I through F_M. (See Equation 42)

Now, Equation 40 is expressed using Equation 42.

,_ ... F, G, = ,z ... F, I(I+D, )-_]r_', (43)



B_othsides of Fxluation 43 are divided the matrix of polynomial vectors, and Gx is found in terms of the Dxj scoefficients and
F,. Again, this process is repeated using the y-slope data to find Gy in terms of ry.

Gx = I (I + Dx)-I])I ", (4-4)

6. WAVEFRONT RECONSTRUCTION FROM WAVEFRONT SLOPE

As was stated in section 2, (INTERFEROGRAM ANALYSIS), a representation of the actual wavefront is obtained

by combining two orthogonal slope representations. Therefore, it is necessary to solve for the weighting coefficients for the

actual wavefront. This is done by using a linear combination of the orthogonal slope coefficients. (See Equation 45) The x-

slope and y-slope coefficients are multiplied by the weighting coefficients, H x and Hy respectively, which are of size M by M.
It should be noted that the scaling matrices are a function of the selected fitting polynomial set.

= HxG x + HyGy (45)

lfeach element of G depends only upon its corresponding slope elements (i.e. the polynomial set is orthogonal under

differentiation), then the scaling matrices, Hx and Hy, will be diagonal. However, if the fitting polynomial set is not orthogonal
under differentiation, then fitting errors will occur. The Zemike polynomials are not orthogonal under differentiation; they

exhibit cross-correlation. This cross-correlation is illustrated for the first nine Zernike polynomials:

Term F(x,y) Fx(x,y) Fy(x,y)

0 1 0 0

i x i 0

2 y 0 I

3 2(x2+y 2) - i 4x 4y

4 x2-y 2 2x -2y

5 2xy 2y -2x

6 3 (x3+xy 2 ) - 2x 3 (3x2+y 2 ) - 2 6xy

7 I 3(x2y+y 3) - 2y 6xy 3(x2+3y 2) - 2

8 6(x2+y2) 2 - 6(x2+y2) 2 ÷ i 24(x3÷xy 2) - 12x 24(x2y+y 3) 12y

Table i: Zernike Polynomials and their derivatives.

There are two solutions to the problem of cross-correlation. The first is to orthogonalize the fitting polynomial sets, F x

and Fy. The second option is to use a different basis set which is orthogonal under differentiation. The standard Zemike
polynomials are such a basis set; they can be linearly combined to form their own derivatives. This is illustrated for the first

nine Zernike polynomials:



Z0

Term F(x,y) Fx(x,y) Fy(x,y)

NA NA

Z I x Z 0 NA

Z 2 y NA Z o

Z 3 2(x2+y 2) - 1 4Z I 4Z 2

Z4 x 2 _ y2 2Z I _2Z 2

Z 5 2xy 2Z 2 2Z I

Z 6 3(x3÷xy 2) - 2x 3(Z3+Z 4) ÷ Z o 3Z 5

Z 7 3(x2y+y 3) - 2y 3Z 5 3(Z3-Z 4) ÷ Z 0

Z 8 6(x2+y2) 2 - 6(x2÷y2) 2 ÷ 1 8Z 6 ÷ 4Z 1 8Z 7 ÷ 4Z 2

Table 2: The first nine Zernikes and combinations needed to create the x- and y-derivatives.

In a similar manner, the weighting coefficients for a wavefron! can be constructed from the weighting coefficients of

the slope representation. This is illustrated for the first nine terms in Table 3.

Term G G x Gy

G o NA Gxo Gy 0

G I Gxo - (Gx4+Gx3+Gy5)/9 Gxl Gy I

G 2 Gy 0 - (Gxs÷Gy4÷Gy3)/9 G 2 Gy 2

G 3 (Gxl÷Gy 2 )/8 - (Gx6+Gy7)/16 Gx3 Gy 3

G 4 {Gx1+Gy 2 ) /4 (Gx6-Gy 7 )/16 Gx4 Gy 4

G 5 (Ox2+Gyl) /4 - (GxT-Gy 6) /16 Gx5 Gy 5

G 6 (O×4+O×3+Gy5)/9 - Gxs/15 Gx6 Oy 6

G 7 (G×5-Gy4+Gy3)/9 - Gy8/15 Gx7 Gy 7

G 8 {Gx6+Gy7 )/16 Gx8 Gy 8

Table 3: Weighting coefficients for the wavefront can be created from the slope coefficients.

Recalling Equation 45, the information in Table 3 can be reduced to the scaling matrices, H x and Hy as shown:



H x

Hy =

000 0 0 0 0 0 O"

1 I
1oo-_-_ o o o o

1
ooo o o -c) o o o

0_0 0 0 0- 0 0

0;00 0 O- 0 0

100_ 0 0 0 0 - 0

ooo_ _ o o o-

l
00000 3 0 0 0

000 0 0 0 _6 0 0

OO 0 0 0 0 0 0 0

I
oo o o o-_ o o o

1 1
I0 0 0 0 0 0

9 9

oo_ o o o o- o

oo-; o o o o o

o_ o o o o- o 0

l
ooooo_ o o o

1 ! 0 0 0 Iooo 9 9 -_

00 0 0 0 0 0 1 0

(46)

(47)

7. CONCLUSION

Ronchi shear interferometry is an optical testing technique similar to shearing interferometry. Information about the

slope of a test surface is extracted from inlerferograms. This is done with three main steps. First, the slope data for two

orthogonal directions is sampled, usually by one of two main methods: digitization or phase-measuring interferometry.

Second, the sampled data points are ordered. And third, the ordered data is fitted to a the derivatives of a polynomial set, via a

least squares method and Gram-Schmidt orthogonalization. A linear combination of the slope coefficients is then found to

construct the wavefront from the slope representation.
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A vector formulation for interferogram surface fitting
David J. Fischer

John T. O'Bryan
H. Philip Stahl

Rose-Hulman Institute of Technology, Department of Physics and Applied Optics
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ABSTRACT

Interferometry is an optical testing technique based on the interference of light. Fringes are formed when the
Optical Path Difference (OPD) between a reference beam and an object beam is an integral multiple of the illuminating
wavelength. This OPD is extracted through the process of sampling, ordering and interpolating. This paper develops a
linear-algebra vector notation model of the interferogram sampling and interpolation process.

1. INTRODUCTION

Whenever two wavefronts exist at the same point in space, they superimpose, to create an interference pattern.
The irradiance at any point, E(x,y), as determined by the Optical Path Difference (OPD) between the two wavefronts is
described by:

E(x,y) = E0[I+COs(kOPD)]
where

2n
k = --_--

The two dimensional irradiance pattern created by the optical path difference at all points is called an irradiance pattern.

The challenge is to extract a representation of the test surface from such an interferogram. This is accomplished
by a three step process: data sampling, ordering, and interpolating.

2. INTERFEROGRAM ANALYSIS

Because an interferogram has nearly infinite resolution, the actual number of points that can be measured is
limited only by the sampling technique. There are two main methods for acquiring the data: digitalization, and phase-
measuring interferometry. In digitalization, data points are acquired by sampling along the center of eitber the light or
dark fringes. Usually, the interferogram is photographed and the image is placed onto a digitizing tablet where the data
points are digitalized by a human operator. Alternatively, the image can be acquired with a video camera and digitalized
using image-processing techniques. Phase-measuring interferometry, by contrast, is an electronic process where a video
camera samples the wavefront phase at every point within its detector array - thus creating a high density, uniform grid of
data. An illustration to show the difference in the two techniques is shown in Figure 1 and Figure 2:

.s PY-E /, / -2 7?, / %.z,



Fig. 1.An illustration of the placement of data points
when an interferogram is sampled by digitalization

Fig. 2. An illustration of the placement of datapoints when an
interferogram is sampled by Phase-Measuring Interferometry

For this paper, it is assumed that the data is sampled by manual digitalization along the dark fringes. The data is
recorded in the form (m,x,y) where (x,y) gives the position of the point and (m) is the order of the sampled fzinge - which,
as will be discussed in the next paragraph, is related to the height of the surface in units of 2_.

Once the data has been sampled, it must he ordered. Because the irradiance pattern is proportional to
cos(k*OPD) the data is in units of modulo 2x or modulo _..Thus, even though a point in the interferogram represents a
quantity greater than 27r,no measured quantity will he larger than 2n. For instance, an (x,y) point may have an (m) that is
of magnitude 9_. The measured (m) will equal 0.5n, which is found by taking the magnitude modulo 2n. Therefore, the

magnitude of the data must be artificially reconstructed by ordering the data. This is done by assigning integer order
number values to each series of measured data points. For example, all data points along a given fringe will all have the
same order and each adjacent fringe has an incrementally larger order number.

For manually digitalized data, this ordering is accomplished by the trained operator. For video digitalization, this
is accomplished by image processing techniques. And for phase-measuring, this ordering is accomplished by a process
called phase unwrapping. Once the data has been sampled and ordered, it must be interpolated to a polynomiaJ set to
represent the shape of the test surface, generally, this is accomplished using a least squares method with a Gram-Schnfidt
orthogonalization. From this fit several questions can be answered: how flat is the surface, are the features bumps or

holes, are the features concave or convex, and what aberrations are present.

Traditionally, Zernike polynomials have been used for this representation for several reasons. They look like
classical Seidel Aberrations. They provide a good fit to the circular aperture interfemgram of most optical components.

And, because they are orthogonal, they are easy to manipulate. It is possible to add or subtract coefficients without
seriously affecting the quality of the fit.

To help visualize this three step pfoceu, two graphs are shown in Figure 3 and Figure 4. Figure 3 shows a one
dimensional parabolic wavefront and the irradiance pattern due to the interference of the parabolic wave with a planar
reference wave. This represents a slice of what would be a two dimensional interferogram. The pluses on the irradiance
pattern represent the sampled points on the dark fringes. The numbers below the sampled points are the integer ordering.
Figure 4 is a plot of the ordered points. It is easily seen that a parabolic function couldbe interpolated to those points to
represent the test wave.
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3, VECTOR FORMULATION

The purpose of this section is to describe simply and clearly the analysis process of an interferogram using

general linear-algebra vector notation, and to develop a generalized mathematical model with which to explore the effects

of: sampling parame_rs, fitting polynomials, and the interpolation algorithm on the accuracy of the reconsU-ucfion of the

test surface. The remainder of this paper presents a general vector based formulation for the interpolation process.



Anypointin theintefferogram, Z(x,y), can be represented by a series of M polynomials, F(x,y), and their

coefficients, G.
M

Z (x, y) - E GjFj (x, ,)

jffil

Alternatively, the single point, Z(x,y), can also be expressed as a matrix of polynomials multiplied by a matrix of
coefficients.

[Z (x, y)] =

Lo,,,J

Thus, if a sampled interferogram can be thought of as a series of N measured data points.

[z('1,yl),z(x2,r21,...,z (,_ rN)l

Then it follows that the complete set of all N data points can be represented as a polynomial matrix multiplied by the

coefficients matrix.

_" I (1)

In order to simplify this notation, the data points can be considered to be a vector of length N, a given

polynomial evaluated at all N data points is a vector of length N, and the coefficients are a vector of length M.

I:'l_= _'i- _=

LZ(x_yN)J Lr_(_ yN)J L°_
(2)

Using this notation, the polynomial matrix can be expressed using F vectors.

-_- E,_l...,_ (3)

Thus, rewriting equation 1, the surface can be represented as:

The polynomials can be fit using a least squares method, where S is defined as the sum of the square of the

difference between the data points and the fitted polynomials. Ira perfect fit were possible, then S would be equal to zero,
because there would be no difference between the data points and the repre._nting polynomials evaluated at those points.

However, there are always differences between the real surface and its representation. Therefore, S will be non-zero. The

function of a least squares fit is to find the coefficients, for a given set of polynomials, which minimizes S. This process

can be described using vector notation

_=)l [z-_D]l 2 - minimum



or as more commonly expressed using summations:

S'= Z :'(Xr'Yr)- Z GjFj(xr'Yr)

r=l j=l

-- minimum

"Fnepolynomial coefficients are found by taking the derivative of S with respect to each coefficient and setting

the result equal to zero. For example, minimizing S for G k gives:

N N M

Z Z(xr'Yr)Fk(Xr'Yr) -- Z Z GjFj(xr'Yr) Fk(Xr'Yr)

r= 1 r= lj= 1

The result of minimizing S for all coefficients can be expressed using summations in matrix form as:

N

Z Z(Xr'Yr) Fl (Xr' Yr)

r=l

I

N

Z Z(xr'Yr)FM(XfYr)

r=l

N N

Z Fl(xr'Yr )Fl(xr'yr ) "'" Z FM(Xr'Yr )FI (xr'Yr)

r=l r=l

I I

N N

Z Fl(Xr'Yr)FM(Xr'Yr) "'" Z FM(Xr'Yr)FM(Xr'Yr)

r=l r=l

This expression can be greatly simplified with vector notation to give:

= I

LZ• ruJ LFl'rU _U •

where the dot product of the vectors F l and Fj gives the sum of the products of both polynomials over every data point.
N

_'i" _:j = Z Fi(xr'YrlFj(xr'Yr)
rffil

Likewise the dot product of the vectors Z and F i gives the sum of the products evaluated at all data points.

N

Z" FJ - Z Z(xr'Yr)Fj(xr'Yr)
rffil

Finally, the minimization of S can also be written using the polynomial matrix and its transpose:

=
where the transpose of a matrix is found by rotating its columns so that they become its rows. In the case of the

polynomial matrix (See Equ. 3), the columns are composed of polynomial vectors. The polynomials vectors are rotated to

become the rows of the polynomial matrix, as shown below:



r- -'1

_T_ ' i

IftheF vectorsareorthogonalthentheminimizationprocessproducesadiagonalmatrix

I::l[',JI° ... o

o ...
(4)

and the coefficients can be found by multiplying both sides of the equation by the transpose of the diagonal matrix.

m i

I

'?."

(5)

However, most orthogonal polynomials are only orthogonal over a continuous range, not over discrete points.
Thus, the solution process is not as easy as it first seems. To overcome this limitation, There are three possible
approaches. The first is to assume that the polynomials are orthogonal. This may work if there is enough sampled data to

approximate a continuous range, but it can introduce error. The second is to take the transpose ofth e non-diagonal matrix,
but this can be numerically difficult and inaccurate. And third, the polynomials can be orthogonalized. Typically, this is
accomplished using a Gram-Schmidt technique. Although this introduces extra work, it should pay for itself in the ease

and accuracy it returns in the final solution.

The Gram-Schmidt orthogonalization process takes N arbitrary vectors in an N dimensional space (N-space) and
creates N ortho-normal vectors that form a basis for that space. Ortho-normal vectors are vectors which are orthogonal to

each other, and are normalized, or have a unit length. A basis for an N-space is essentially a coordinate system for that

space, since the basis vectors are linearly independent and all other vectors in that space may be formed from linear
combinations of the basis vectors.

Consider two arbitrary vectors, F 1 and F2, which are wanted to be replaced by their orthogonal counterparts, q_l

and _2"

To begin the process, the first vector is normalized by dividing by its r_itude.The result is defined as its orthogonali_xl

counterpart.



Afterthe first vector is orthogonalized, all other vectors are orthogonalize_ in a systematic manner, by projecting the
current vector onto each preceding orthogonalized vector and subtracting that projection from the vector leaving the
orthogonal component.

F2 * _1

This component is then normalized by dividing by its magnitude, and renaming it to its orthogoaal counterpart. This

f"2

T

process is repeated for each polynomial vector in the system.
For the interpolation process, the polynomial vectors, F (See Equ. 2), are orthogonalized and replaced by the

new vectors, O. Because the original fitting polynomials, F, are replaced by q_,a different set of coefficients are found.
Therefore, the original coefficients, G, are replaced by r. The system can now be rewriv.en using the new vectors, and
because the • vectors are orthogonal, the matrix is diagonal

01 • _1 ... 0 MI
o

The system is then solved as shown previously by multiplying both sides by the transpose of the matrix. (See
Equ. 4, 5) The F coefficients are now known and can be used to represent the original surface.

F-" I

Z° q'M

lieu,,



4.CONCLUSION

Intefferometry is an optical testing technique in which information about a test surface is extracted from an
interferogram. This is done with three main steps. First, the data is sampled, usually by one of two main methods:
digitalization or phase-measuring interferometry. Second, the sampled data points are ordered. And third, the ordered
data is interpolated to a polynomial set. Typically, Zemike polynomials are used and are fitted with a least squares method
andGram-Schmi& onhogonalization.

In order to describe the interpolating process, a generalized linear-algebra vector notation has been developed in
which the data points, fitting polynomials, and coefficients are viewed as vectors. A least squares fit is applied to the
vector system representing the test surface. The polynomial vectors are ortho-normalized via the Gram-Schmidt process
and then system is solved for the coefficients vector.
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Surface Tension Driven Convection Experiment (STDCE-2)
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STDCE

The Surface Tension Driven Convection Experiment

(STDCE) is a fundamental fluid physics experiment

designed to provide quantitative data on the

thermocapillary flow of fluid under the influence of an

increased localized surface temperature.

STDCE flew on the Space Shuttle Columbia in the First

United States Microgravity Laboratory (USML-1) in June
1992.

The second flight of this experiment (STDCE-2) is

scheduled for flight in the Fall of 1995.
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Motivation

On Earth, buoyancy flow caused by gravity limits our
ability to:

grow semi-conductor crystals,
grow biological crystals, and
solidify metal alloys.

by introducing imperfections into the lattice structure.

Also, gravity causes lattice structures to 'sag' and limits
the size of crystal which can form in suspension.

In microgravity, buoyancy flow is reduced to 10 6,

offering great promise for material processing in space.

However, thermocapillary flow still exists and must be
understood.
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Surface Tension

Surface tension is a property of a liquid which tends to
minimize its surface area. For, example, surface tension

causes nearly spherical drops to form when rain falls.

On Earth, gravity forces usually overpower surface
tension forces, and liquids form flat surfaces.



Convection

Convection refers to the flow of a fluid. Natural

convection is driven by gravity: colder, heavier fluid is

pulled down, causing warmer, lighter fluid to rise.

On Earth, this buoyancy driven convection occurs

whenever there is a temperature difference within a fluid.

Convection can also be driven by surface tension. As its

temperature is increased, a liquid has a lower surface
tension. Warmer surface liquid is pulled toward colder

surface liquid, which has a higher surface tension. As the

warmer liquid moves across the surface, it draws more

liquid up to the surface, creating a convection current.

This surface tension driven convection, also called

thermocapillary flow, occurs whenever there is a

temperature difference across the surface of a liquid.
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Thermocapillary Flow

• Thermocapillary flow has two states:

Steady State, and
Oscillatory.

Steady flows are two-dimensional. They are the same for
any symmetrical observer.

• Oscillatory flows are three-dimensional.

Surface deformations produced by steady state
thermocapillary flow may produce oscillatory flow.

Oscillatory flow may be detrimental to the crystal growth
process and needs to be studied.
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Science Objectives

The objective of STDCE is to determine the extent and

nature of thermocapillary flow as a function of:

heating mode and level, and

liquid free-surface shape.

The objective of STDCE-2 is to determine the onset

conditions for and nature of oscillatory flow as a function
of:

heating mode and level,

liquid free-surface shape, and
container size.

To accomplish these objectives, three parameters must be
monitored:

surface temperature distribution,
bulk fluid flow, and
surface deformation.
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STDCE Configuration

• The STDCE-2 hardware consists of five basic modules:

Fluid Chamber,

Heat Source (CO 2 Laser or Cartridge)
Infrared Imager,
Flow Visualization, and
Surface Deformation.

In STDCE, the fluid was in a single 10 cm diameter
container. In STDCE-2, there will be three containers:
1.2, 2, and 3 cm.

The fluid is heated by illuminating the surface with a CO 2

laser beam or a cartridge heater.

Surface temperature is measured by a HgCdTe thermal
imager.

Bulk fluid flow is measured by monitoring the motion of
microscopic particles which have been uniformly mixing
into the fluid. This motion is tracked by shinning a
'sheet' of light through the fluid and observing the light

scattered from the particles.

STDCE had no means for measuring surface deformation.
But, STDCE-2 will.
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the flow. The frame--grabber board digitizes a sequence of video fields

separated by AT, which is definedfn integral multiples of 1/60 second.
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Surface Deformation

On Earth it has been observed that both steady-state and

oscillatory thermocapillary flow states produce
deformations of the air/oil free surface.

Steady state flow produces two characteristic steady state
surface deformations:

a 'Pimple' (bump), and

a 'Dimple' (hole).

Pimples are produced when the surface is exposed to an

external temperature source over a small area.

Dimples are produced when the same temperature input is

spread out over a larger surface area.

Oscillatory flow produces both standing wave and rotary
surface deformations.
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Purpose

The purpose of this project is to design, build, calibrate,
and fully characterize one or more non-contact (i.e.
optical) prototype instruments for measuring the surface
deformation of an air-oil free-surface under the influence

of a localized thermal load (i.e. CO2 laser beam or
electric heater) which can be integrated into the
anticipated re-flight of the Surface Tension Driven
Convection Experiment (STDCE-2)

While initially these measurements will be performed in a
laboratory environment, the instrument must be capable

of operating in a Space Transport System (STS)
environment for the United States Microgravity

Laboratory flights USML-2 and/or USML-3.



Measurement Approach

Because the surface is a fluid, it cannot be contoured

mechanically. It must be contoured optically.

There are two ways to optically contour a large
two-dimensional reflective surface:

interferometrically or

geometrically.

Generally, it is easier and more accurate to use an

interferometer than to perform a geometrical test because

interferometers measure a surface's shape while most

geometrical tests measure a surface's slope.

Unfortunately, because of the large surface deformations,

conventional visible interferometry is not practical. The

fringes will be too dense for the camera to resolve.

One solution to this problem is to use an infrared

interferometer, but such a technique might interfere with

the localized heating process.

Therefore, classical geometrical techniques were

evaluated: Foucault knife-edge test, wire test, Hartmann

screen test, Ronchi test, grating interferometry, or

reflective moire.



Geometrical Techniques

Geometrical techniques measure the surface's slope

instead of its height. Thus, there are specific advantages
and disadvantages:

Advantage: they are insensitive to tilting of the

free-surface cause by G-Jitter.

Disadvantage: two orthogonal data sets are required to
reconstruct its shape. These two data sets can be either

x-slope and y-slope or r-slope and 0-slope.



Surface Symmetry

A fundamental question which has a profound impact
upon the selection of the final approach is whether or not

the surface is rotationally symmetric.

If the surface is rotationally symmetric, then it may be
possible to satisfy the mission's science requirements with
just x-slope or r-slope.

But, if the surface is non-rotationally symmetric, then it is

necessary to acquire two orthogonal data sets.

• The surface deformations are not rotationally symmetric.

• But, their outer edge is at a constant height.



Candidate Techniques

Three techniques which provide data over the entire

aperture were evaluated:

Ronchi grating,
Hartmann test, and

Projected grid.



Projected Grid

In the projected grid approach, a linear or crossed grid

pattern is placed directly in front of an extended light

source (illuminated diffuser screen).

This pattern is then imaged onto the reflective sample
surface.

The reflected wavefront is re-imaged by another optical

system onto the video camera.

The projected grid approach was base lined early but

eliminated because it lacked sensitivity, dynamic range,

and flexible spatial sampling.



Ronchi Grating

In the Ronchi grating test, a collimated beam of light is
reflected off of the sample surface.

The reflected wavefront is focused through a grating to

form a Ronchigram which is imaged onto a video camera.

The Ronchi approach has many advantages. By selection
of grating it has variable sensitivity and dynamic range.
By location of grating it has flexible spatial sampling.

Unfortunately, it does not provide simultaneous
orthogonal slope data sets.
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Hartmann Screen Test

The Hartmann screen test can provide both x- and y-slope
information simultaneously.

• Unfortunately, it has limited spatial resolution.

And, for this application, it is not practical because the
screen would obscure the upper surface flow visualization
function.

A practical implementation of the Hartmann test is to use
crossed gratings in a Ronchi test. However, the complex
patterns produced are difficult to analyze.



Two Channel Ronchi

Another way to obtain simultaneous x- and y-slope data

is with a two channel Ronchi approach.

For the two-channel Ronchi approach, a collimated beam

of light (laser or white) is projected onto the reflective

sample surface.

The reflected beam is collected, split into separate x- and

y-slope measurement channels, passed through vertical

and horizontal gratings, and projected onto an observation

screen for viewing by a video camera.

A two channel Ronchi instrument was demonstrated

which simultaneously acquires x- and y-slope data for an

input wavefront. Unfortunately, because of packaging,

cost, and schedule issues, a two channel system could not

be implemented.
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The Ronchi Test

The Ronchi test is performed by observing the shadow

pattern produced when a focused beam of light is passed

through a periodic structure, such as a line grating.

If the beam is ideal, the shadow pattern looks like the

grating. But, if the beam is deformed, then the pattern is
deformed.

A Ronchigram is obtained when the shadow pattern is

recorded at an image of the surface under test, such that

it is superimposed ('painted') upon the image.

Information about the surface is obtained by correlating

shadow lines with physical locations on the surface. The

distance between adjacent shadows indicates how much

the surface slope changes between those two locations.

The amount of slope required to go from one shadow to

its neighbor is called the equivalent wavelength.
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The Ronchi Test

The Ronchi test can be explained as either a geometric
ray or an interferometric test.

From a geometric ray point of view, the fringes in a
Ronchigram are the result of the deviation of a ray from

its ideal path because of slope errors.

From the interferometric point of view, the fringes in the

Ronchigram are produced from the interference between

overlapping diffraction orders. The overlapping

wavefronts produce a shearing of the original wavefront.

Therefore the Ronchi test can be modeled as a sheared
wavefront interferometer.



Advantages of the Ronchi Test

Measures Slope: It is insensitive to G-jitter induced
tilting of the oil s0rface.

Self-Referencing: It is proportional to the difference
between the test wavefront and itself displaced laterally.

Common Path: The wavefront and its sheared self travel

the same optical path, therefore, the test is insensitive to
atmospheric turbulence and mechanical vibration.

Known and Variable Sensitivity (Equivalent Wavelength):

Measurement sensitivity is determined wholly by
geometric factors (grating period and beam F/#) which
can be varied in a controlled manner.

Known and Variable Spatial Sampling: The number of

spatial sample points across the aperture can be controlled
by displacing the grating a known distance from focus.



Disadvantages of the Ronchi Test

• Slope patterns are difficult to interpret visually.

Two orthogonal data sets (x-, y-slope; or r-, O-slope) are

required to completely characterize a given wavefront.

Orthogonal slope information can be obtained with a

single-channel system using a crossed-grating, but the

patterns are even more difficult to interpret and analyze.



Shear Interferometry

Whenever two coherent wavefronts are at the same point

in space at the same time, they superimpose to form an

interference pattern called an interferogram.

The irradiance at any point, E(x,y), cause by this

superposition can be expressed as a function of

measurement wavelength and optical path difference

(OPD) between the two interfering wavefronts.

E(x v) =Eo/1 + cos (2n OPD

where: _. = measurement wavelength

For a shear interferogram, the OPD is given by the
difference between the wavefront and its sheared self.

OPD = W(x,y)- W(x + Ax,y) = A W(x,y)

where: Ax = shear distance

A W(x,y) = differential wavefront



Shear Interferogram

The irradiance for a sheared interferogram is given by:

Relationship between differential wavefront and slope is:

t_W(x,y) 8 W(x_y) Ax =
8x

a(x_y) ax

where: a(x,y) = wavefront slope

Inserting this into the irradiance equation gives:

E(x,y) m +cOSl  l
where:

AjC
- equivalent measurement wavelength



Ronchigram

• Similarly, a Ronchigram is described by:

where: a / -
6W

8x !
- Normalized Slope

X x _ Normalized Pupil Coordinate
r

r = Pupil Radius

d

2 Fi#

d = Grating Spacing

F/# = Test Beam F/#

Thus, with proper scaling, conventional interferogram
analysis provides a direct measurement of the slope.

Finally, if the grating is shifted forward of focus, the
irradiance pattern becomes:

[ / z / 33]



Ronchi Theory

F

]ncldent

Wavefront

uC><l,gl) Collecting " " u(x2,g2) u(x3,g33Lens
Crating Observation

Screen

The wavefront in the front focal plane of the
collecting lens is

U(Xl,Yl)

The wavefront in the back focal plane of the
collecting lens (without the grating) is the Fourier
transform of the wavefront in the front focal plane.

u(x2,Y2) = ,,qr{u(xl,yt)} = U(
x2 Y2



Ronchi Theory Continued

]ncldeni

WaveFr'oni

f _1_ f _1 _ z _!

uCx1,_1) Collecting - , u(x2,Lj2)
Lens

Oratlng

The wavefront is modulated by the
function of the grating.

uCx3,y3_
Observation

Screen

transmission

U(X'2,Y'2) t(X'2_Y'2)

At the observation screen, the wavefront is given by

u(xa,y3) = ,._'{u(x'2,y'2) }

x3 Y3)u(xa,ya) = u(f x3,f Ya) , T(--z z

When z = f the wavefront at the observation screen

is the original wavefront convolved with the Fourier
transform of the grating transmission function.



Sine Wave Grating

A sine wave grating is a series of transparent and
opaque straight line bands of the following form.

t(x2,Y2) = 1 + cos(d)

The Fourier transform of the sine wave function is

three delta functions.

3"{1 + cos(d)} = 8(x) + 8(x - at) + 8(x + d)



Sine Wave Grating
g3

Ronchlgram

_- x3

ub u. uc 1 I

U(X3,Y3) = U a + Ub(--_Z Ix - d]) + Uc('--_z Ix+d]) I

The irradiance at the observation screen is

E = E, a + E, b + E c + (UaU; + UbU a) + (UaU c + UcUa) + (UbUc + U cU;) .

The cross terms (overlapping regions) are the terms that

interfere to produce the Ronchigram.
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Flight System

Based upon managerial issues (packaging, cost, and

schedule) and science issues (sensitivity, dynamic range,

and spatial sampling) a single channel Ronchi system was
selected.

The managerial constraints and science requirements were

then appropriately modified.



Surface Deformation Science Requirements

Observe the entire surface for three different sized

chambers: 12 mm, 20 mm, and 30 mm.

• Measure slope as small as 5/xm/mm.

Measure slope as great as 30 ktm/mm without vignetting.

Spatially sample the surface at least 10 times per
diameter.

Temporally sample the surface at least 30 times per
second.

Reconstruct the surface shape at least along a diameter.

Indicate when the oil is filled to its flat surface position.



Science Requirement

Field of View

The surface deformation measuring apparatus must be
able to view the entire surface area of each fluid chamber

at an optimum camera spatial resolution.

The chamber sizes are:

30 mm

20 mm

12 mm

The apparatus's imaging system should have at least three

different fields of view which can be used to view any of

the three chambers.



Science Requirement

Measurable Surface Features

The apparatus must be able to measure three different types of
surface features:

• A central bump or 'pimple',

• A central hole or 'dimple', and

• A large-area temporal oscillatory motion.
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Science Requirements

Central Bump

The central bump is assumed to be spherical in shape
with a constant radius of curvature, given by:

wCy)
y2

where: A = Maximum Vertical Height, and
r = Maximum Lateral Radius.

The maximum measurable surface slope of the central

bump occurs at y = r and is given by:

5y r

The maximum measurable surface curvature of the central

bump is given by:

82W(y) Imax = 2 a
by 2 r 2





Science Requirements

Central Hole

The central hole is assumed to be Gaussian in shape and

is given by:

w(y)

where: A = .Maximum Vertical Height, and
r = Maximum Lateral Radius.

The maximum measurable surface slope of the central

hole occurs at y2 = r 2/2_ and is given by:

_ _ 1.5 A

r /"

The maximum measurable surface curvature of the central

hole occurs at y = 0 and is given by:

b2W(Y) Im_x = 2r: A = 6.3 A
5y 2 r 2 r 2







Science Requirements

Maximum Resolvable Features

The largest feature that the apparatus must resolve,
whether it is a bump or a hole, is assumed to have the
following properties:

Vertical Height
Lateral Radius

A = 250 _m
r=5 mm

The maximum assumed measurable surface slope and

curvature for a bump are:

Slope
Curvature

100 ,um/mm
20 ktm/mm 2

The maximum assumed measurable surface slope and
curvature for a hole are:

Slope
Curvature

75 ,um/mm
63 ,um/mm 2



Interferogram Analysis

A minimum of 3 pixels per fringe are required to
extract the correct information about the test signal.

Rise, Run, and Feature Sign

A good rule of thumb is to have 4 pixels per fringe.

The curvature corresponding to one fringe per 4
pixels can be calculated by:

[3- 3"e¢
4ar

where [_ = curvature, _.¢¢ = equivalentwavelength,

a = pixel width, and r - radius of test beam.

For _q = 60.48 um, r = 10 mm, and a = 19.5 um the
curvature is calculated to be 77.5 um/mm z

Since the calculated curvature is larger than the
required curvature of 63 nm/mm 2, the required
curvature can be resolved and each fringe covers

more than four pixels.

Since each cycle of the test function is larger: than
four pixel widths the Nyquist rate is met (_ >2_o).



Science Requirement

Minimum Resolvable Feature

The smallest feature that the apparatus must resolve,

whether it is a bump or a hole, is assumed to have the

following properties:

Vertical Height
Lateral Radius

A= lO/_m
r-5 rnm

The minimum assumed measurable surface slope and

curvature for a bump are:

Slope
Curvature

4.0 _m/mm
0.8 _m/mm 2

The minimum assumed measurable surface slope and

curvature for a hole are:

Slope
Curvature

3.0/tm/mm
2.5/,tm/mm 2



Ronchi Measurement Performance

The performance of the Ronchi system is completely

specified by its equivalent wavelength:

d
_'eq =

2(/7/#)

Since the F/# of the measurement beam is fixed by the

optical system, everything depends upon grating spacing.

This dependance is extremely important. It allows for the
measurement capability of the system to be varied on
orbit by simply inserting different gratings into the beam.

If the surface deformation is large, insert a coarse grating.

If it is small, use a fine grating.
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Figure 14 Comparison of Slope Detectable with Different Gratings



Performance Parameters

• Accuracy defines the uncertainty of a given measurement.

For the current sampling system, the measurement

accuracy is approximately Lea�8.

A measurement system can report numbers to an arbitrary

precision, but they may not be accurate or repeatable.

The minimum measurable slope of a given system is
defined to be twice its measurement accuracy.

For the current sampling system the minimum measurable

slope is approximately _oq/4.

The maximum amount of slope which the system can
measure is determined by how many shadow lines

(fringes) the video camera can clearly resolve in the
Ronchigram.

For the current sampling system, the Ronchigram will be
limited to approximately 16 lines pairs for a maximum

slope of 16 _q.



Table 1. Performance Summary for F/2.25 System

Grating
Frequency

[lp/mm]

Grating
Line Space

[mm/lp]

10.0

_m/mm]

0.1

Accuracy

_m/mm]

22.22

Minimum

Slope

_m/mm]

Maximum

Slope

_m/mm]

2.78

0.5 2.0 444.44 55.56 111.11 7111

1.0 1.0 222.22 27.78 55.56 3556

2.0 0.5 111.11 13.89 27.78 1778

2.5 0.4 88.89 11.11 22.22 1422

5.0 0.2 44.44 5.56 11.11 711

5.56 356



Science Requirements

Temporal Resolution

The third required surface feature which must be

measured is a large-area temporal oscillation.

It is assumed that the period of this oscillation is on the
order of 2 to 5 seconds. Thus, a standard video camera

with a 60 Hz field rate is wholly adequate as the data

acquisition device.

However, if the temporal phenomena were to have a

period of less than about 0.2 sec, then a non-standard
high-speed video camera may be necessary.

It is assumed that there may be high-speed temporal gitter

in addition to the lower-speed temporal oscillation. The

effect of this gitter is to reduce the contrast of the pattern.

To eliminate gitter the camera will need a high speed

shutter and the source will need sufficient output power

to expose the camera.



Science Requirement

Fill Level Indication

Silicon oil has a very low surface tension and spreads

easily on any surface. To prevent it from flowing out of
the container, the rim of the chamber has a sharp edge

that 'pins' the oil in place and is 'barrier' coated.

As the container is filled in low gravity, the liquid will

form a deep spherical curvature.

When completely filled, the surface will be fiat.

If over-filled, the surface will form a spherical dome.

By placing a grating at a focal point, direct visual
evidence of the oil's surface state is provided to the

Mission Specialist.

When the oil surface is not flat, there is a line pattern.

As the oil approaches a flat surface, the pattern spreads

out (has fewer lines) until all the lines disappear when the
surface is fiat. If the container is under or overfilled, the

lines will reappear and increase in number.



/
Concave Surface Flat Surface Convex Surface

Figure 9. Fill Level Indicator



Flight System Design

The free surface deformation measuring instrument was
designed in modules.

The flight system consists of six modules:

light source,
projection/imaging,

polarization,

pupil relay,
measurement, and
camera.

Each module overcomes various engineering and/or

packaging challenges while allowing the total system to

meet the science requirements.

Each module is independently assembled andbench

aligned before integration into the final system.

And, each module prevents unnecessary exposure of the
crew to light radiation.
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Source Module

The source module provides a collimated beam of light

which uniformly illuminates the object under test.

This is accomplished with a laser diode and a Galilean

beam expanding telescope.

A laser diode was selected because it is a very-bright

collimated source capable of surviving the launch.

(White-light and LED sources were also considered.)

A commercially available Galilean beam expander was

selected because it is compact and does not have a spatial
filter which could become misaligned during launch.

The beam diameter is defined by the projection/imaging

module's entrance pupil to be 22 mm in diameter.

The beam is magnified (30X) and truncated to balance

uniformity and power.
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Fluid Properties

• The object under test is a free surface of 2 cSt silicon oil.

It has a refractive index of 1.39

• And, an irradiance reflection coefficient of 2.7%.

Because of this low reflection coefficient, the source must

have at least 10 mW of power for the video camera to
observe the Ronchi pattern.

Also, ghost reflections from the optical components can
obscure the oil surface reflection.



Illumination Geometry

Because the free-oil surface is a specular reflector, we

treat it as a plane mirror.

A collimated illumination beam is required to implement
the Ronchi test.

• Two illumination geometries were considered:

Off-Axis

On-Axis

• The on-axis geometry was selected for several reasons:

Able to get lens closer to fluid surface, thus able to

observe the highest slope errors.

No off-axis projection distortion or cosine scaling.

,Ib

Easy to package.

The on-axis geometry requires the beam to travel in two
directions through the projection/imaging modulel This

can cause ghost reflection problems.
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Polarization Module

The polarization module eliminates ghost reflections and

efficiently uses the source's available optical power.

Since the projection/imaging module is used in both
directions and because the oil's reflection coefficient is

small, ghost reflections from the illuminated optical

surfaces can seriously obscure the oil reflection.

To eliminate this problem, the polarization of the beam is

manipulated such that the ghost reflections are vertically

polarized and the oil reflection is horizontally polarized.

This is accomplished with two polarizers and a quarter

wave plate. The first polarizer defines the polarization of

the ghost reflections. The quarter wave plate rotates the

oil reflection polarization by 90 degrees. And, the second

polarizer blocks all of the ghost reflections and passes the
oil reflection.

To maximize the available power, a polarization beam

splitter is used. All of the source's vertical light is
transmitted into the projection module. And, all of the

returning horizontal light is reflected into the relay
module. A conventional 50/50 beam splitter could be

used, but it would throw away 75% of the available light.
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Projection/Imaging Module

• The projection/imaging module has two functions:

illumination

imaging.

Its illumination function magnifies or de-magnifies the
light beam to illuminate the oil surface for each of the
three chamber sizes (12 mm, 20 mm, 30 mm).

• Its imaging function has two requirements:

form an image of the different sized surfaces under
test at a fixed sized pupil location, and

pass a reflected wavefront with at least 30/_m/mm of
slope without vignetting.

The illumination and imaging functions determine the
magnification properties of this module.

• The vignetting requirement determines its F/#.

• Packaging issues determines its clear aperture.



Projection/Imaging Module

Illumination Function

The illumination function is accomplished with two

AFOCAL lens pairs, an outer pair and an inner pair.

The outer pair forms a Keplerian telescope with unit

magnification.

The inner pair forms a Galilean telescope which is
positioned about the outer pair's internal focus and

functions as a pseudo field lens. This lens provides

magnification/de-magnification when it is flipped.

To illuminate the 20 mm chamber, remove the flip lens

such that the 22 mm source beam is relayed unchanged.

To illuminate the larger or smaller chambers, insert the

flip lens either forward or backward to magnify or de-

magnify the beam. The final illumination beam size

depends upon the flip lens magnification factor.

The flip lens is not symmetric about the focal point and
does not rotate about the focal point.
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Projection/Imaging Module

Imaging Function
1

Imaging of the different sized chambers into a fixed size

pupil is accomplished by running the beam backwards

through the system.

The Keplerian telescope, without the flip lens, relays an

image of the surface in the middle sized chamber.

Inserting the flip lens relays images of the larger or
smaller sized chambers.

For proper imaging the surface must be in the front focal

plane of the lens closest to the oil.

The resultant image will be in the back focal plane of the

last lens of the projection/imaging module. This image is

transferred to the camera module by the pupil relay and
measurement modules - forming a Ronchigram.



Projection/Imaging Module

Vignetting

The projection/imaging module (as well as the pupil relay
and measurement modules) must pass a maximum slope
of 30/_m/mm without vignetting.

This places an F/# requirement on these components.
The faster their F/# the more slope they can pass.

Initially, the optical system was designed to fully collect a

wavefront reflected from a 250/zm high, 10 mm diameter
spherical deformation.

The actual design was determined by packaging and
schedule issues.

Packaging factors limit their maximum diameter and
minimum focal length.

• Schedule require them to be commercially available.
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Vignetting Requirement

The selected components are F/2.25 (90 mm focal length,
40 mm diameter) achromatic doublets with approximately

2 waves of spherical aberration at 633 nm.

This amount of aberration is acceptable given the
magnitude of the anticipated oil surface deformations.

With proper calibration, this error can be removed from
the measurement.

Please note that the 30/zm/mm specification is not
satisfied for the 30 mm diameter chamber.





Pupil Relay Module

The pupil relay module is a unit magnification AFOCAL

system.

Its original function was simply to extend the beam path
such that the measurement module is at a location where

the mission specialist can insert the gratings.

Additionally, it serves as an alternative measurement
module allowing for gratings to be inserted into parts of
the beam not accessible with the measurement module.

• This is required to properly measure hole deformations.
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Measurement Module

The measurement module allows gratings of different line
spacings to be inserted into different locations of the

focused oil reflection forming a Ronchigram.

Since the lens F/#'s are known, changing the grating line

spacing changes the equivalent wavelength.

The equivalent wavelength depends only upon the grating

line spacing and is independent of where the grating is

placed in the beam.

Grating placement in the beam determines the number of

spatial sample points across the beam.

To insure at least 10 sample points per diameter, a coarse

grating must be placed at a greater distance from the
measurement module focus than a fine grating.

The distance from focus for a given grating depends

entirely upon its line spacing:

z - lO d (F/#) = 22.5 d

To reconstruct a two-dimensional surface contour,

separate horizontal and vertical gratings, or crossed

gratings can be inserted into the beam.

• Radial or circular zone gratings may be tried.
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Fioure 14 Comparison of Slope Detectable with Different Gratings



Table 2. Distance from Focus for Spatial Sample Points

Grating
Frequen

cy
[lp/mm]

Grating
Line

Space
[mrn/lp]

Zfor 10

Samples
per

Diameter

Z for 15

Samples
per

Diameter

Z for 20

Samples
per

Diameter

0.5 2.0 45.0 mm 67.5 mm 90.0 mm

1.0 1.0 22.5 mm 33.75 mm 45.0 mm

2.0 0.5 11.25 mm 16.88 mm 22.5 mm

2.5 0.4 9.0 mm 13.5 mm 18.0 mm

5.0 0.2 4.5 mm 6.75 mm 9.0 mm

10.0 0.1 2.25 mm 3.375 mm 2.5 mm



Camera Module

The Ronchigram produced by the measurement module is
imaged onto a diffuser plate where a real image is
formed.

This image is viewed by a video camera and recorded on

video tape for subsequent data analysis.

The physical distance from the diffuser screen to the

camera is determined by the focal length of the camera
lens, the camera sensor format, and the size of the image
on the diffuser screen:

h tmage ]1 + fcamera lens

r sensor J

For the flight system, the diffuser image radius is 10 mm,
the sensor radius is 2.2 mm, and the camera lens focal

length is 28 mm. Thus, the stand-off distance is 155 mm.

• The camera is a 1/2 inch format RS-170 video camera.



Calibration

If the optical system were aberration free, the
Ronchigram would be a series of perfect straight lines.

However, given the total number of positive optical
components in the optical system, such a pattern is
impossible

By measuring the beam reflected from a 'perfect'
reference-flat insert, after assembly, these errors can be
characterized and removed from all measured data.



Certification

The prototype was certified by measuring a known

amount of defocus aberration introduced by translating

the collimating lens.

E z

8 (FI#)2

where: ez = Longitudinal Aberration

Defocus was used because it is:

easy to introduce,
linear with translation, and
easy to analyze.

Additionally, the prototype measured diamond-turned
samples provided by NASA.

• Measurement accuracy is approximately 5%.

The flight instrument will be certified by measuring
known test plates.



Calibration results

For each grating, a linear relationship was observed
between the amount of lens translation and the amount of

measured defocus.

Multiplying each defocus value by the appropriate

equivalent wavelength produces a single line of data.

The average percent error between the data and the best
fit line is __.5%.











Grating Alignment

The system is designed for the insertion of
interchangeable gratings at various locations in the beam.

• Thus, grating alignment errors can be a problem.

The data analysis was evaluated for its sensitivity to error
in the position of one grating relative to its orthogonal

partner:
Rotation about the Surface Normal

Rotation parallel to the Line Structure
Rotation perpendicular to the Line Structure
Translation along Surface Normal
Translation parallel to Line Structure
Translation perpendicular to Line Structure

In general the Ronchi test is relatively insensitive to small

grating placement errors.

• Except for translation along the surface normal.
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Figure 15 Ronchigrams with Gratings Aligned

y-slope y-s_ )pe

x-slope
L x-slope

Figure 16 Vectors Corresponding to the Slope in the Ronchigrams in

Figure 15.



Figure 17 Ronchigrams with Grating Misalignment

y-slope y-slope

x-slope

/
x-slope

Figure 18 Vectors Corresponding to the Slope in the Ronchigrams in

Figure 17.
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Post-Flight Data Analysis

The recorded Ronchigrams are analyzed after the flight to
reconstruct the surface shape along a given diameter- and
if possible over the entire surface.

This is accomplished using standard interferogram
analysis techniques to obtain a polynomial representation
of each slope pattern.

Surface shape along a diameter is obtained by integrating
across the slope data.

With orthogonal data sets, surface shape is obtained by a
linear combination of Zernike polynomials.



Conclusions

A prototype Ronchi instrument to monitor:

Steady State Deformation,

Oscillatory Deformation, and
Fill Level

of a free-surface of oil has been developed, demonstrated,
and characterized for STDCE-2.

A single-channel Ronchi configuration has been selected

as the flight instrument.

• The flight instrument is currently being designed



Conclusions

• The Ronchi test is a shearing interferometer.

The number of sheared wavefronts and the magnitude of
the shear is dependant upon the characteristics of the

grating.

The fringe spacing (equivalent wavelength) in a
Ronchigram is proportional to the spacing of the grating
and the F/# of the test beam.

The dynamic range and sensitivity of the Ronchi test can
be changed by simply changing the grating spacing.

The two channel Ronchi system has an accuracy of __.5%.

For a shearing system, the maximum measurable error is

determined by the surface curvature.
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